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19	 Approximate Inference: Importance Sampling, 
Particle Filters 

Thus far, we have focused on developing inference algorithms, exact and approximate, 
for discrete graphical models or Gaussian graphical model. The exact method involved 
Elimination algorithm and Junction Tree for generic graph while Belief Propagation 
(BP) (sum-product/max-product) for Tree graphical model. The approximate in­
ference method involved variational approximation, graph partitioning and Markov 
Chain Monte Carlo (MCMC) method. However, we did not discuss the scenario where 
variables are continuous, and not necessarily Gaussian. Let us understand difficulty 
involved in such a scenario. 

Why approximate? Consider the scenario of a continuous valued Hidden Markov 
Model (HMM). Recall that HMM is a tree-structured and hence from graphical struc­
ture perspective, BP is exact. Therefore, it is not clear what is the need for approx­
imation. To that end, recall that when the variables were jointly Gaussian, BP can 
be easily implemented because 

(a) the messages in BP were Gaussian, 

(b) the marginals were Gaussian, 

(c) and we did not need to directly evaluate integrals, instead, we propagated means 
and covariance parameters. 

One of the difficulties with applying BP to general distributions is that we have to pass 
distributions as messages, but describing a distribution can be quite complex, which 
means that sending a message can be expensive. In the Gaussian case, we avoided 
this difficulty because Gaussians are simply parametrized by a mean and covariance. 
The other key was that the messages turned out to be Gaussian, so everything stayed 
in the same family of distributions. Unfortunately, this does not happen for arbitrary 
continuous distributions. 

Gaussian models are widely used and powerful, but may not always the right 
choice. Therefore, it warrants us considering the following general continuous HMM1: 

x0 ∼ p0|−1(·) : initialization 

xn+1|xn ∼ pxn+1|xn (·) : dynamics 

yn|xn ∼ pyn|xn (·) : observations 
1For exposition, we’ll assume that all of the variables are scalars, but everything explained here 

naturally extends to vector valued variables. 



We’re interested in the marginal of xn after observing y0, . . . , yn (i.e. pn|n(xn|y0, . . . , yn)) 
also called the posterior marginal. Recall that we can calculate it exactly via BP in 
an iterative manner in two steps: 

Prediction: Transitioning to a new state 

previous iteration  	 :  
pn+1|n(xn+1|y0, . . . , yn) = pxn+1|xn (xn+1|xn) pn|n(xn|y0, . . . , yn) dxn 

xn 

Update: Folding in a new observation 

1 
pn+1|n+1(xn+1|y0, . . . , yn+1) = pyn+1|xn+1 (yn+1|xn+1)pn+1|n(xn+1|y0, . . . , yn)

Z 

where Z	 is the partition function which is an implicit integral. 

We use the shorthand notation pn|m to denote pxn|y0,...,ym (xn|y0, . . . , ym). In practice, 
it is very hard to use these steps exactly, because both of the steps involve calculating 
an integral. In the Gaussian case, these steps reduced to simple linear algebra, but 
in general calculating the integrals for arbitrary distributions is intractable, so we use 
approximations instead and this leads to approximate inference. 

This is precisely the type of approximation that we discuss in this lecture. We 
shall do so in the context of a tree graph structure offered by HMM. The method is 
called particle filtering and can be seen as sequential MCMC building upon importance 
sampling. This lecture develops method of particle filtering for HMM. It should be 
noted that an adaptation of MCMC (using appropriate Metropolis Hasting rule for 
continuous setting) can be used for approximate inference as well in such a scenario. 
However, particle filtering allows exploitation of graphical structure like HMM for 
efficiency. 

Remarks. It should be noted that there are other approaches known in the literature. 
For example, we can modify the Kalman Filter algorithm that we derived earlier to 
handle nonlinear dynamical systems (NLDS) by linearizing the state space equations 
about the current state estimate; in this case, it is called the Extended Kalman Filter 
(EKF). The EKF has a limited scope of applicability, but when it can be applied, it 
is very useful. In fact, the EKF was used by the Apollo missions. Unfortunately, it 
is hard to analyze theoretically. We shall not discuss EKF here. 

19.1	 Particle Filter for HMMs with General Continuous Dis­
tribution 

Consider an HMM with general continuous state and observations distributions as 
depicted in Figure 1: we want to estimate hidden states x0, . . . , xn given associated 
observations y0, . . . , yn. Concretely, find pxi|y0,...,yn (xk|y0, . . . , yn), 0 ≤ i ≤ n. To that 
end, let us gather what we know. 
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x0 x1 . . . xn

y0 y1 . . . yn

Figure 1: Example of an HMM. 

We can sample from pxi (·) by sampling from px0,...,xn (·), 0 ≤ i ≤ n. Since pxi (·) 
is the marginal of px0,...,xn (·) for 0 ≤ i ≤ n, simply extracting the ith coordinate of 
samples from px0,...,xn (·) is the same as sampling from pxi (·). In other words, suppose 
we take S samples from px0,...,xn (·), 

Then extracting the ith 

{(x0(s), . . . , xn(s)}S 
s=1. 

coordinate, 

(1) 

{xi(s)}S 
s=1 (2) 

is a set of S samples from pxi (·). Likewise, suppose we have a set of observations 
y0, . . . , yn; then extracting the ith coordinate from samples from px0,...,xn|y0,...,yn (·|y0, . . . , yn) 
yields samples from pxi|y0,...,yn (·|y0, . . . , yn). 

We can sample from px0,...,xn (·) by using the Markov property. Note that 
by the Markov property of our model, xi is conditionally independent of x0, . . . , xi−2 

given xi−1. Therefore, in order to generate sth sample from px0,...,xn (·), we first sample 

x0(s) ∼ px0 (·), (3) 

and then for all i = 1, . . . , n, we sample 

xi(s) ∼ pxi|xi−1 (·|xi−1(s)). (4) 

We can approximate expectations with samples. Suppose we wish to compute 
an expectation of some function f(·) with respect to (marginal) distribution of xi, 
Epxi 

[f(xi)]. Given a set of S samples {xi(s)}sS 
=1 from pxi (·), by the strong law of large 

numbers, we can approximate the expectation as 

Ss1 
f(xi(s)) → Epxi 

[f(xn)] as S → ∞. (5)
S 

s=1 

3
 



 

This approximation is valid for a large class of functions, including all bounded mea­
surable functions. For example, if f is the indicator function f(x) = l [x ∈ A] for a 
set A, this can be used to compute pxi (xi ∈ A): 

s1 
S

l [xi(s) ∈ A] → Epxi 
[l [xi ∈ A]] = pxi (xi ∈ A) as S → ∞. (6)

S 
s=1 

However, we can’t sample directly from px0,...,xn|y0,...,yn (·|y0, . . . , yn). Of course, 
we aren’t very interested in the prior px0,...,xn (·); we have observations y0, . . . , yn from 
the HMM and want to incorporate this information by using the posterior distribution 
px0,...,xn|y0,...,yn (·|y0, . . . , yn). By the rules of conditional probability, the posterior given 
observations y0, . . . , yn may be expressed as (using notation, v0 

n = (v0, . . . , vn) for any 
vector v)2 

n n n 
n n py0,...,yn|x0,...,xn (y0 |x0 )px0,...,xn (x0 ) px0,...,xn|y0,...,yn (x0 |y0 ) = . 

npy0,...,yn (y0 ) 

Given the model description, we know px0,...,xn as well as py0,...,yn|x0,...,xn , both of which 
factorize nicely. However, we may not know py0,...,yn (·). Therefore, given observation 
y0 
n, the conditional density of x0, . . . , xn takes form 

n
1    n  

n n n px0,...,xn|y0,...,yn (x0 |y0 ) = px0,...,xn (x0 ) pyi|xi (yi|xi) . (7)
Z

i=0 

In above, Z represents unknown ‘normalization constant’. Therefore, the challenge 
is, can we sample from a distribution that has an unknown normalization constant? 
Importance sampling will rescue us from this challenge as explained next. 

19.2 Importance Sampling 

Let us re-state the challenge abstractly: we are given a distribution with density µ 
such that 

q(x) 
µ(x) = , (8)

Z 

where q(x) is a known function and Z is unknown normalization constant. We want 
to sample from µ so as to estimate 

Eµ [f(x)] = f(x)µ(x)dx. (9) 

We can sample from a known distribution with density ν, potentially very different 
from µ. Importance sampling provides means to solves this problem: 

2Here, we assume that we have well-defined densities to be able to write conditional densities as 
expressed. 
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• Sample x(1), x(2), . . . , x(S) from known distribution with density ν. 

• Compute w(1), . . . , w(S) as 

q(x(s)) 
w(s) = . (10)

ν(x(s)) 

• Output estimation for Eµ [f(x)] as  S w(s)f(x(s))ˆ s=1E(S) =  S . (11) 
s=1 w(s) 

ˆNext we provide justification for this method: as S → ∞, the estimation E(S) 
converges to the desired value Eµ [f(x)]. To that end, we need following definition: 
let support of distribution with density p be 

supp(p) = {x : p(x) > 0}. (12) 

Theorem 1. Let supp(µ) ⊆ supp(ν). Then as S → ∞, 

Ê(S) → Eµ [f(x)] , with probability 1. (13) 

Proof. Using strong law of large numbers, it follows that with probability 1, 

S   s1 q(x) 
w(s)f(x(s)) → Eν f(x)

S ν(x)
s=1 

q(x) 
= f(x)ν(x) dx 

ν(x)supp(ν) 

= Zµ(x)f(x) dx 
supp(µ) 

= ZEµ [f(x)] , (14) 

where we have used the fact that q(x) = 0 for x /∈ supp(µ). Using similar argument, 
it follows that with probability 1, 

Ss1 
w(s) → ZEµ [1] = Z. (15)

S 
s=1 

This leads to the desired conclusion. 

Remarks. It is worth noting that as long as supp(µ) is contained in supp(ν), the 
estimation converges irrespective of choice of ν. This is quite remarkable. Alas, it 
comes at a cost. The choice of ν determines the variance of the estimator and hence 
the number of samples S required to obtain good estimation. 
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Figure 2: Depiction of importance sampling. ν(x) is the proposal distribution and 
µ(x) is the distribution we’re trying to sample from. On average we will have to draw 
many samples from ν to get a sample where ν has low probability, but as we can see 
in this example, that may be where µ has most of its probability mass. 

19.3 Particle Filtering: HMM 

Now we shall utilize Importance Sampling for obtaining samples from distribution 
px0,...,xn|y0,...,yn (x

n 
0 |y0 

n), which in above notation corresponds to µ. Therefore, the func­
tion q is given by 

nn 
q(x n) = px0,...,xn (x n) pyi|xi (yi|xi) . (16)0 0 

i=0 

The known distribution that we shall utilize to estimate the unknown distribution is 
none other than px0,...,xn (·), which in above notation is ν. Therefore, for any given x0 

n , 
the weight function w is given by 

q(xn)n n 0 w0 ≡ w(x0 ) = 
nν(x0 ) 

nn 
= pyi|xi (yi|xi). (17) 

i=0 

In summary, we estimate Epx0,...,xn|y0,...,yn 
[f(x0, . . . , xn)|y0, . . . , yn] as follows. 

1. Obtain S i.i.d. samples, x0 
n(s), 1 ≤ s ≤ S, as per px0,...,xn .  

2. Compute corresponding weights wn(s) = n p(yi|xi(s)), 1 ≤ s ≤ S.0 i=0 

3. Output estimation of Epx0,...,xn|y0,...,yn 
[f(x0, . . . , xn)|y0, . . . , yn] as 

S n nw (s)f(x (s))s=1 0 0 
S n 

. (18) 
w (s)s=1 0 
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Sequential implementation. It is worth observing that the above described al­
gorithm can be sequentially implemented. Specifically, given the samples x0 

n(s) and 
n n+1 n+1corresponding weight function w0 (s), we can obtain x0 (s) and w0 (s) as follows: 

• Sample xn+1(s) ∼ pxn+1|xn (·|xn(s)). 
n+1 n• Compute w0 (s) = w0 (s) × pyn+1|xn+1 (yn+1|xn+1(s)). 

Such a sequential implementation is particularly useful in various settings, just like 
sequential inference using BP. 

19.4 Particle Filtering: Extending to Trees 

In this section, we’ll show how we can use a particle approach to do approximate 
inference in general tree structured graphs. As in the previous section, we’ll break 
down the BP equations into two steps and show how particles are updated in each 
step. The HMM structure was particularly nice and we’ll see how the additional 
flexibility of general trees makes the computation more difficult and how the tools 
we’ve learnt so far can surmount these issues. 

Recall that for general tree structured graphs, the BP message equations were n 
mi→j (xj ) = ψij φi(xi) ml→i(xi) dxi. 

xi l∈N (i)\j 

We can write this as two steps n 
φij (xi) ; φi(xi) ml→i(xi) (19) 

l∈N(i)\j 

mi→j (xj ) = ψij (xi, xj )φij (xi) dxi. (20) 
xi 

From the messages, the marginals can be computed as n 
pi(xi) ∝ φi(xi) ml→i(xi). 

l∈N(i) 

Naturally, we’ll use weighted particle sets to represent messages mi→j and beliefs 
φij . For the details to work out nicely, we require some additional normalization 
conditions on the potentials 

φi(xi) dxi < ∞ 
xi 

ψij (xi, xj ) dxj < ∞ for all xi 
xj 
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The first issue that we run into is how to calculate φij . If we represent ml→i as a 
weighted particle set, we have to answer what it means to multiply weighted particle 
sets? Another way of thinking about a weighted particle set approximation to ml→i 

is s 
ml→i(xi) ≈ wl→i(s)δ(xi − xl→i(s)). 

s 

where δ is the Kronecker delta3 . Then it is clear that multiplication of weighted 
particle sets, just means multiplication of approximations. But this does not solve 
the problem, consider ml→i(xi) × ml'→i(xi) s 

ml→i(xi) × ml'→i(xi) ≈ wl→i(s)δ(xi − xl→i(s))wl'→i(s 
/)δ(xi − xl'→i(s 

/)) 
's,ss 

= wl→i(s)wl'→i(s 
/) × δ(xi − xl→i(s))δ(xi − xl'→i(s 

/)) 
's,s

The distributions are continuous, so  xl'→i(s
/) with probability 1, hence xl→i(s) = 

the product would be 0. The solution to this problem is to place a Gaussian kernel 
around each particle. Explicitly, instead of approximating ml→i as a sum of delta 
functions, we’ll approximate it as s 

ml→i(xi) ≈ wl→i(s)N(xi; xl→i(s), Jl
−
→
1 
i), 

s 

where Jl→i is an information matrix and whole sum is referred to as a mixture of 
Gaussians. This takes care of computing the beliefs. 

As a result, φij is a product of d − 1 mixtures of Gaussians where d is the degree 
of i. It isn’t hard to see that φij is itself a mixture of Gaussians, but with Sd−1 

components. So, computing the integral in the message equation and generating new 
particles xi→j (s) boils down to sampling from a mixture of Sd−1 Gaussians. Sampling 
from a mixture of Gaussians is usually not difficult, unfortunately, the mixture has 
exponentially components, so in this case it is no small task. One approach to this 
problem is to use MCMC, either Metropolis-Hastings or Gibbs sampling4 . This gives 
us the new particles for our message, and we can iterate to compute weighted particle 
approximations for the rest of the messages and marginals. 

To summarize, we could extend particle methods to BP on general tree structures 
in a natural way. In doing so, we had to overcome two obstacles: “multiplying” 
weighted particle sets and sampling from a product of mixtures of Gaussians. We 
overcame the first issue by replacing the δ functions with Gaussians. We tackled the  

3The Kronecker delta has the special property that if f is a function then f(x)δ(x) dx = f(0).
x 

It essentially picks out the value of f at 0. 
4See “Efficient Multiscale Sampling From Products of Gaussian Mixtures” Ihler et al. (2003) for 

more information about this approach. 
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second issue using familiar tools, MCMC. The end result is an approximate inference 
algorithm to calculate posterior marginals on general tree structured graphs with 
continuous distributions! 

19.4.1 Concluding Remarks 

In the big picture, we combined our BP algorithm with importance sampling to 
do approximate inference of marginals for continuous distribution. This rounds out 
our toolbox of algorithms; now we can infer posterior marginals for discrete and 
continuous distributions. Of course, we could have just used the Monte Carlo methods 
from the previous lecture to simulate the whole joint distribution. The problem with 
that approach is that it would be very slow and inefficient compared to the particle 
filtering approach. 
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