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14 The Junction Tree Algorithm 

In the past few lectures, we looked at exact inference on trees over discrete random 
variables using Sum-Product and Max-Product, and for trees over multivariate Gaus­
sians using Gaussian belief propagation. Specialized to hidden Markov models, we 
related Sum-Product to the forward-backward algorithm, Max-Product to the Viterbi 
algorithm, and Gaussian belief propagation to Kalman filtering and smoothing. 

We now venture back to general undirected graphs potentially with loops and again 
ask how to do exact inference. Our focus will be on computing marginal distributions. 
To this end, we could just run the Elimination Algorithm to obtain the marginal 
at a single node and then repeat this for all other nodes in the graph to find all 
the marginals. But as in the Sum-Product algorithm, it seems that we should be 
able to recycle some intermediate calculations. Today, we provide an answer to this 
bookkeeping with an algorithm that does exact inference on general undirected graphs 
referred to as the Junction Tree Algorithm. 

At a high-level, the basic idea of the Junction Tree Algorithm is to convert the 
input graph into a tree and then apply Sum-Product. While this may seem to good 
to be true, alas, there’s no free lunch and the fineprint is that the nodes in the new 
tree may have alphabet sizes substantially larger than those of the original graph! In 
particular, we require the trees to be what are called junction trees. 

14.1 Clique trees and junction trees 

The idea behind junction trees is that certain probability distributions corresponding 
to possibly loopy undirected graphs can be reparameterized as trees, enabling us to 
run Sum-Product on this tree reparameterization and rest assured that we extract 
exact marginals. 

Before defining what junction trees are, we define clique graphs and clique trees. 
Given graph G = (V, E), a clique graph of G is a graph where the set of nodes is 
precisely the set of maximal cliques in G. Next, any clique graph that is a tree is a 
clique tree. For example, Figures 1b and 1c show two clique trees for the graph in 
Figure 1a. 
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Figure 1: (a) Original graph. (b)-(c) Clique trees for the original graph in (a). 



Note that if each xi takes on a value in X, then each clique node in the example clique 
trees corresponds to a random variable that takes on X3 values since all the maximal 
clique sizes are 3. In other words, clique nodes are supernodes of multiple random 
variables in the original graph. 

Intuitively, the clique tree in Figure 1b seems inadequate for describing the under­
lying distribution because maximal cliques {1, 3, 4} and {1, 2, 4} both share node 1 
but there is no way to encode a constraint that says that the x1 value that these two 
clique nodes take on must be the same; we can only put constraints as edge potentials 
for edges ({1, 3, 4}, {2, 4, 5}) and ({2, 4, 5}, {1, 2, 4}). Indeed, what we need is that the 
maximal cliques that node 1 participates in must form a connected subtree, meaning 
that if we delete all other maximal cliques that do not involve node 1, then what we 
are left with should be a connected tree. 

With this guiding intuition, we define the junction tree property. Let Cv denote 
the set of all maximal cliques in the original graph G = (V, E) that contain node v. 
Then we say that a clique graph for G satisfies the junction tree property if for all 
v ∈ G, the set of nodes Cv in the clique graph induces a connected subtree. For 
example, the clique tree in Figure 1c satisfies the junction tree property. 

Finally, we define a junction tree to be a clique tree that satisfies the junction tree 
property. Thus, the clique tree in Figure 1c is a junction tree. With our previous 
intuition for why we need the junction tree property, we can now specify constraints 
on shared nodes via pairwise potentials. We will first work off our example before 
discussing the general case. 

The original graph in Figure 1a has corresponding factorization 

px1,x2,x3,x4,x5 (x1, x2, x3, x4, x5) ∝ ψ134(x1, x3, x4)ψ124(x1, x2, x4)ψ245(x2, x4, x5), (1) 

whereas the junction tree in Figure 1c has corresponding factorization 

py134,y124,y245 (y134, y124, y245) 

∝ φ134(y134)φ124(y124)φ245(y245)ψ134,124(y134, y124)ψ124,245(y124, y245). (2) 

For notation, we’ll denote [yV ]S to refer to the value that yV assigns to nodes in S. 
For example, [y134]3 refers to the value that y134 ∈ X3 assigns to node 3. Then note 
that we can equate distributions (1) and (2) by assigning the following potentials: 

φ134(y134) = ψ134([y134]1, [y134]3, [y134]4) 

φ124(y124) = ψ124([y124]1, [y124]2, [y124]4) 

φ245(y245) = ψ245([y245]2, [y245]4, [y245]5) 

ψ134,124(y134, y124) = 1{[y134]1 = [y124]1 and [y134]4 = [y124]4}
ψ124,245(y124, y245) = 1{[y124]2 = [y245]2 and [y124]4 = [y245]4} 

The edge potentials constrain shared nodes to take on the same value, and once this
 
consistency is ensured, the rest of the potentials are just the original clique potentials.
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In the general case, consider a distribution for graph G given by
  
px(x) ∝ φC (xC ), (3) 

C∈C 

where C is the set of maximal cliques in G. Then a junction tree T = (C, F) for G has 
factorization   

py({yC : C ∈ C}) ∝ φC (yC ) ψV,W (yV , yW ), (4) 
C∈C U,W ∈F 

where edge potential ψV,W is given by 

ψV,W (yV , yW ) = 1{[yV ]S = [yW ]S} for S = V ∩ W. 

Comparing (3) with (1) and (4) with (2), note that importantly, yC ’s are values over 
cliques. In particular, for V, W ∈ C with S = V ∩ W = ∅, we can plug into the joint 
distribution (4) values for yV and yW that disagree over shared nodes in S; of course, 
the probability of such an assignment will just be 0. 

With the singleton and edge potentials defined, applying Sum-Product directly 
yields marginals for all the maximal cliques. However, we wanted marginals for 
nodes in the original graph, not marginals over maximal cliques! Fortunately, we 
can extract node marginals from maximal-clique marginals by just some additional 
marginalization. In particular, for node v in the original graph, we just look at the 
marginal distribution for any maximal clique that v participates in and sum out the 
other variables in this maximal clique’s marginal distribution. 

So we see that junction trees are useful as we can apply Sum-Product on them 
along with some additional marginalization to compute all the node marginals. But 
a few key questions arise that demand answers: 

1. What graphs over distributions have junction trees? 

2. For a graph that has a junction tree, while we know a junction tree exists for 
it, how do we actually find it? 

3. For a graph that does not have a junction tree, how do we modify it so that it 
does have a junction tree? 

We’ll answer these in turn, piecing together the full Junction Tree Algorithm. 

14.2 Chordal graphs and junction trees 

To answer the first question raised, we skip to the punchline: 

Theorem 1. If a graph is chordal, then it has a junction tree. 
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Figure 2: Diagram to help explain the proof of Lemma 1. 

In fact, the converse is also true: If a graph has a junction tree, then it must 
be chordal. We won’t need this direction though and will only prove the forward 
direction. First, we collect a couple of lemmas. 

Lemma 1. If graph G = (V, E) is chordal, has at least three nodes, and is not fully 
connected, then V = A∪B∪S where: (i) sets A, B, and S are disjoint, (ii) S separates 
A from B, and (iii) S is fully connected. 

Proof. Refer to the visual aid in Figure 2. Nodes α, β ∈ V are chosen to be nonad­
jacent (requiring the graph to have at least three nodes and not be fully connected), 
and S is chosen to be the minimal set of nodes for which any path from α to β passes 
through. Define A to be the set of nodes reachable from α with S removed, and 
define B to be the set of nodes reachable from β with S removed. By construction, 
S separates A from B and V = A ∪ B ∪ S where A, B, and S are disjoint. It remains 
to show (iii). 

Let γ, δ ∈ S. Because S is the minimal set of nodes for which any path from α to β 
passes through, there must be a path from α to γ as well as a path from α to δ, from 
which we conclude that there must be a path from γ to δ in A ∪ S. Similarly, there 
must be a path from β to γ as well as a path from β to δ, from which we conclude 
that there must be a path from γ to δ in B ∪ S. 

Suppose for contradiction that there is no edge from γ to δ. Consider the shortest 
path from γ to δ in A ∪ S and the shortest path from γ to δ in B ∪ S. String these 
two shortest paths together to form a cycle of at least four nodes. Since we chose 
shortest paths, this cycle has no chord, which is a contradiction because G is chordal. 
Conclude then that there must be an edge from γ to δ. Iterating this argument over 
all such γ, δ ∈ S, we conclude that S is fully connected. 
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Lemma 2. If graph G = (V, E) is chordal and has at least two nodes, then G has 
at least two nodes each with all its neighbors connected. Furthermore, if G is not 
fully connected, then there exist two nonadjacent nodes each with all its neighbors 
connected. 

Proof. We use strong induction on the number of nodes in the graph. The base case 
of two nodes is trivial as each node has only one neighbor. 

Now for the inductive step: Our inductive hypothesis is that any graph of size up 
to N nodes which is chordal and has at least two nodes contains at least two nodes 
each with all its neighbors connected; moreover, if said graph is fully connected then 
there exist two nonadjacent nodes each with all its neighbors connected. 

We want to show that the same holds for any graph G/ over N + 1 nodes which is 
chordal and has at least two nodes. Note that if G/ is fully connected, then there is 
nothing to show since each node has all its neighbors connected, so we can arbitrarily 
pick any two nodes. The interesting case is when G/ is not fully connected, for which 
we need to find two nonadjacent nodes each with all its neighbors connected. To do 
this, we first apply Lemma 1 to decompose the graph into disjoint sets A, B, S with 
S separating A and B. Note that A ∪ S and B ∪ S are each chordal with at least two 
nodes and at most N nodes. The idea is that we will show that we can pick one node 
from A that has all its neighbors connected and also one node from B that has all 
its neighbors connected, at which point we’d be done. The proof for finding each of 
these nodes is the same so we just need to show how to find, say, one node from A 
that has all its neighbors connected. 

By the inductive hypothesis, A∪S has at least two nodes each with all its neighbors 
connected. In particular, if A∪S is fully connected, then we can just choose any point 
in A and its neighbors will all be connected and it certainly won’t have any neighbors 
in B since S separates A from B, at which point we’re done. On the other hand, if 
A ∪ S is not fully connected, by the inductive hypothesis, there exist two nonadjacent 
nodes in A ∪ S each with all its neighbors connected, for which certainly one will 
be A because if both are in S, they would actually be adjacent (since S is fully 
connected). 

We now prove Theorem 1: 

Proof. We use induction on the number of nodes in the graph. For the base case, we 
note that if a chordal graph has only one or two nodes, then trivially the graph has 
a junction tree. 

Onto the inductive step: Suppose that any graph of up to N nodes that is chordal 
has a junction tree. We want to show that chordal graph G with N + 1 nodes also has 
a junction tree. By Lemma 2, G has a node α with all its neighbors connected. This 
means that removing node α from G will result in a graph G/ which is also chordal. 
By the inductive hypothesis, G/, which has N nodes, has a junction tree T/. We next 
show that we can modify T/ to obtain a new junction tree T, which is the junction 
tree for our (N + 1)-node chordal graph G. 
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Let C be the maximal clique that node α participates in, which consists of α and 
its neighbors, which are all connected. If C \ α is a maximal-clique node in T/, then 
we can just add α to this clique node to obtain a junction tree T for G. 

Otherwise, if C \ α is not a maximal-clique node in T/, then C \ α, which we know 
to be a clique, must be a subset of a a maximal-clique node D in T/. Then we add C 
as a new maximal-clique node in T/ which we connect to D to obtain a junction tree 
T for G; justifying why T is in fact a junction tree just involves checking the junction 
tree property and noting that α participates only in maximal clique C. 

14.3 Finding a junction tree for a chordal graph 

We now know that chordal graphs have junction trees. However, the proof given 
for Theorem 1 is existential and fails to deliver an efficient algorithm. Recalling our 
second question raised from before, we now ask how we actually construct a junction 
tree given a chordal graph. 

Surprisingly, finding a junction tree for a chordal graph just boils down to finding 
a maximum-weight spanning tree, which can be efficiently solved using Kruskal’s 
algorithm or Prim’s algorithm. More precisely: 

Theorem 2. Consider weighted graph H, which is a clique graph for some underlying 
graph G where we have an edge between two maximal-clique nodes V, W with weight 
|V ∩ W | whenever this weight is positive. 

Then a clique tree for underlying graph G is a junction tree if and only if it is a 
maximum-weight spanning tree in H. 

Before we prove this, we state a key inequality: Let clique tree T = (C, F) be for 
underlying graph G = (V, E) with maximal cliques C. Denote Se as the separator 
set for edge e ∈ F, i.e., Se is the nodes in common between the two maximal cliques 
connected by e. Then any v ∈ V satisfies:  

1{v ∈ Se} ≤ 1{v ∈ C} − 1. (5) 
e∈F C∈C 

What this is saying is that the number of separator sets v participates in is bounded 
above by the number of maximal cliques v participates in minus 1. The intuition for 
why there’s a minus 1 is that the left-hand side is counting edges in the tree and the 
right-hand side is counting nodes in the tree (remember that a tree with N nodes has 
N − 1 edges). As a simple example, if v participates in two maximal cliques, then v 
will participate in at most one separator set, which is precisely the intersection of the 
two maximal cliques. 

With the above intuition, note that the inequality above becomes an equality if 
and only if T is a junction tree! To see this, after dropping terms on both sides that 
have nothing to do with node v, the left-hand side counts edges that v is associated 
with and the right-hand side counts maximal-clique nodes that v is associated with 
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minus 1. So equality holds when T restricted to maximal cliques that v participates
 
in forms a connected subtree. 

Now we prove Theorem 2: 

Proof. Let T = (C, F) be a clique tree for underlying graph G = (V, E). Note that T 
is a subgraph of weighted graph H. Denote w(T) to be the sum of all the weights 
along edges of T using the edge weights assigned. We find an upper-bound for w(T), 
using inequality (5): 

w(T) = 
e∈F 

|Se| 

= 
e∈F v∈V 

1{v ∈ Se} 

= 
v∈V e∈Fe 

1{v ∈ Se}  
≤ 

v∈V C∈C 

1{v ∈ C} − 1

= 
v∈V C∈C 

1{v ∈ C} − |V | 

= 
C∈C v∈V 

1{v ∈ C} − |V | 

= 
C∈C 

|C| − |V |. 

This means that any maximum-weight spanning (clique) tree T for H has weight n 
bounded above by |C| − |V |, where equality is attained if and only if inequal-C∈C 
ity (5) is an equality, i.e., when T is a junction tree. 

14.4 The full algorithm 

The last question asked was that if a graph doesn’t have a junction tree, how can we 
modify it so that it does have a junction tree? This question was actually already 
answered when we discussed the Elimination Algorithm. In particular, when running 
the Elimination Algorithm, the reconstituted graph is always chordal. So it suffices to 
run the Elimination Algorithm using any elimination ordering to obtain the (chordal) 
reconstituted graph. 

With this last question answered, we outline the key steps for the Junction Tree 
Algorithm. As input, we have an undirected graph and an elimination ordering, and 
the output comprises of all the node marginals. 

1. Chordalize the input graph using the Elimination Algorithm. 
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2. Find all the maximal cliques in the chordal graph. 

3. Determine all the separator set sizes for the maximal cliques to build a (possibly 
loopy) weighted clique graph. 

4. Find a maximum-weight spanning tree in the weighted clique graph from the 
previous step to obtain a junction tree. 

5. Assign singleton and edge potentials to the junction tree. 

6. Run Sum-Product on the junction tree. 

7. Do additional marginalization to get node marginals for each node in the original 
input graph. 

As with the Elimination Algorithm, we incorporate observations by fixing observed 
variables to take on specific values as a preprocessing step. Also, we note that we’ve 
intentionally brushed aside implementation details, which give rise to different vari­
ants of the Junction Tree Algorithm that have been named after different people. For 
example, by accounting for the structure of the edge potentials, we can simplify the 
Sum-Product message passing equation, resulting in the Shafer-Shenoy algorithm. 
Additional clever bookkeeping to avoid having to multiply many messages repeatedly 
yields the Hugin algorithm. 

We end by discussing the computational complexity of the Junction Tree Algo­
rithm. The key quantity of interest is the treewidth of the original graph, defined in a 
previous lecture as the largest maximal clique size for an optimal elimination ordering. 
Note that using an optimal elimination ordering will result in the largest maximal-
clique node in the junction tree having alphabet size exponential in the treewidth, so 
the Junction Tree Algorithm will consequently have running time exponential in the 
treewidth. 

Yet, the fact that the Junction Tree Algorithm may take exponential time should 
not be surprising. Since we can encode NP-complete problems such as 3-coloring as 
an inference problem over an undirected graph, if the Junction Tree Algorithm could 
efficiently solve all inference problems over undirected graphs, then the P vs. NP 
debate would have long ago been settled. 
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