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Problem 8.1 
In problem 1 of homework 2, we introduced a distribution over matchings in a graph, i.e. 
subsets of edges such that no two edges share a vertex. Here we focus on the special case of 
a complete bipartite graph with vertices v1, . . . , vN on the left and u1, . . . , uN on the right, 
as shown: 
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In such a graph, a perfect matching is a matching which includes N edges. We are interested 
in sampling from a distribution over perfect matchings. We can denote a perfect matching 
using the variables σ = [σij ] ∈ {0, 1}N×N , where σij = 1 if vi and uj are matched and 
σij = 0 otherwise. Observe that σ is a perfect matching if and only if 

NN 
σik = 1 for all 1 ≤ i ≤ N 

k=1 
NN 

σkj = 1 for all 1 ≤ j ≤ N. 
k=1 

A perfect matching σ can also be thought of as a permutation σ : {1, . . . , N} → {1, . . . , N}. 
E.g., if σ12 = σ21 = σ33 = 1, this would correspond to the permutation σ(1) = 2, σ(2) = 1, 
and σ(3) = 3. Consider the distribution defined by: ⎛ ⎞ N ⎝p(σ) ∝ exp wij σij ⎠ 1{σ is a perfect matching}

i,j  N 
= exp 1{σ is a perfect matching}wiσ(i)

i 

where wij ≥ 0 for all i, j. 
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(a) In this part, consider the uniform distribution over perfect matchings, i.e.	 wij = 0 for 
all i, j. Describe a simple procedure to sample σ from this uniform distribution. 

(b) Consider the Metropolis-Hastings rule defined by: choose i, i' ∈ {1, . . . , N} uniformly 
at random. If i = i', do nothing, otherwise with probability 

R = min(1, exp(wiσ'(i) + wi'σ'(i') − wiσ(i) − wi'σ(i')) 

swap σ(i) and σ(i') (i.e. set a £ σ(i) and b £ σ(i') then define a new permutation 
σ'(j) = σ(j) for j  = i, i' and σ'(i) = b and σ'(i') = a). 

(i) Show that for any perfect matching σ 

1 
p(σ) ≥ ,

N ! exp(Nw∗)

∗where w = maxi,j wij . 
(ii) Show that under the above Markov chain, for any valid transition σ → σ' 

1 
Pσσ' ≥ exp(−2w ∗ )

N2 . 

(iii) For the conductance of this Markov chain, argue using (i) and (ii) that   
σ∈S,σ'∈S' p(σ)Pσσ' 

Φ = min 
S p(S)p(S') 

≥ 
1 1 

exp(−2w ∗ ). 
N ! exp(Nw∗) N2 

(iv) Using (iii), obtain a bound on the mixing time of the Markov chain. 

Problem 8.2 (Practice) 
In this problem, we develop an efficient algorithm for sampling from a two-dimensional Ising 
model. In particular, suppose all variables xij take values in {−1, +1}. Using the graph 
structure G shown in Figure Figure 8.2(a), define the distribution ⎫⎬N 

⎧⎨ 
p(x; θ) ∝ exp  θxixj .  ⎩ ⎭  

(i,j)∈E 

(a) Derive the update rules for a node-by-node Gibbs sampler for this model. Implement 
the sampler in  and run it for 1000 iterations (sweeps over all the 
on an Ising model of size 60 × 60 with coupling parameter θ = 0.45. Show 
of the variables after every 100 iterations. 
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Figure 8.2(a) 

(b) Suppose we are given a tree-structured undirected graphical model T with variables  
y = (y1, . . . , yN ). Give an efficient procedure for sampling from the joint distribution  
py(y).  

Hint: One way to generate an exact sample from a distribution over random variables 
y = (y1, . . . , yN ) is to sample each yi from the distribution pyi|y1,...,yi−1 (·|y1, . . . , yi−1) 
in sequence. Show that with a suitable variable ordering, all of these conditional 
distributions can be computed by running belief propagation once. 

(c) In	 block Gibbs sampling, we partition a graph into r subsets A1, . . . , Ar. In each  
iteration, for each Ai, we sample xAi from the conditional distribution pxAi 

. |xV\Ai 

For the Ising model G described above, consider the two comb-shaped subsets A and 
B shown in Figure Figure 8.2(b) (b). Describe how to use your sampler from part 
(b) to perform the block Gibbs updates. (For this part, you may assume a black-box 
implementation of your sampling procedure from part (b).) 

(d) Implement the block Gibbs	 sampler from part (c) in  As in part (a), set  
θ = 0.45 and run the sampler for 1000 iterations, showing the state of the variables  
after every 100 iterations. Which of the two samplers appears to mix faster?  

To make your life easier, we have provided you with a  routine (comb sum product.m 
 for computing the sum-product messages on the comb graph. Feel free to use this routine as 
a black box, even though it does more work than necessary. 

Problem 8.3 
This problem explores how the partitioning scheme can be utilized for approximate estima­
tion in related situations. 

(a) Consider a rectangular 2D grid graph G = (V, E) over N nodes (an example of such a 
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Figure 8.2(b) 

graph is shown in Figure 8.2(a)) and a distribution with G as its graphical model: ⎛ ⎞ N N 
px(x) = 

Z(

1 
θ) 

exp ⎝ θixi + θij xixj ⎠ 
i∈V (i,j)∈E 

where Z(θ) is the normalization constant or partition function. Suppose that 0 ≤ 
θi, θij ≤ 1 for all i ∈ V, (i, j) ∈ E and xi are binary (i.e. xi ∈ {0, 1}). We know 
that G possesses a randomized partition, in other words, for any E > 0, there exists a 
randomized partition of V into disjoint subsets V1, . . . , VM such that �M• V = m=1 Vm,  

4 • |Vm| ≤ 
�2 for all 1 ≤ m ≤ M , 

• p(e ∈ Ec) ≤ E where Ec = E\ ∪M Em and Em = E ∩ (Vm × Vm).m=1 

Use the elimination algorithm on the subproblems to derive an efficient algorithm to 
approximate log Z(θ) that is similar to the MAP case. Determine bounds on how well 
it approximates log Z(θ). 

(b) Now suppose that: 

• θi ≥ 0 can take any non-negative value. 
• θij = −∞ for all (i, j) ∈ E . 
• xi is binary for all i. 

We shall define 0 × (−∞) = 0. Thus for any x:  
0 if any (i, j) ∈ E and xi = xj = 1 

px(x) ∝   . 
exp i∈V θixi otherwise 
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(i) Why doesn’t the MAP partition algorithm derived in lecture apply here? 
(ii) Through a variation of the MAP partition algorithm, derive a new algorithm to 

compute an approximate MAP for this setup. Determine bounds on how well 
it approximates the MAP. Hint: Fix the values of specific xi so that (i) is not a 
problem. 

Problem 8.4 
Suppose we have the following sequence of scalar observations 

yn = f(x) + vn, n = 0, 1, . . . , (1) 

where f(·) is a known invertible function and vn ∼ iid, N (0, σ2), and from which we want to v 
estimate the random variable x whose a priori distribution is x ∼ N (0, σ2). The variances x 
σ2 and σ2 are known. v x 

An estimate of x can be obtained via a recursive estimation algorithm based on parti­
cle filtering. Recall that the particle filtering algorithm computes approximations to the 
relevant posterior distributions according to the following recursion 

NN 
(i) (i)p̂xn|y1,...,yn (xn) = wn|n δ(xn − xn )  

i=1  
N N 

(i) (i)
p̂xn+1|y1,...,yn (xn+1) = wn+1|n δ(xn+1 − xn+1) 

i=1 

(i) (i)
where xn is the ith particle at time n and w is the associated weight after having n|n 
incorporated observation yn, and where  

1, if x = 0 
δ(x) =

0, otherwise. 

To simplify the analysis, assume that no resampling is involved. 

From the posterior approximations so generated, a sequence of estimates x̂n = x̂(y1, . . . , yn) 
is produced by treating the approximations as perfect and generating the MAP estimate 
corresponding to this posterior. 

(a) Write a set of state space equations corresponding to this estimation problem. (For­
mally, this means determine a dynamical state space model such that the MAP es­
timate of the state at time n in this model based on data through time n coincides 
with the MAP estimate of x based on the same data.)   (i)

Next, suppose we initially prepare N particles x0 , i = 1, 2, . . . , N , each of which is drawn 
(i)

independently from the prior distribution N (0, σ2). Let E = mini |x − x |.x 0 
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(b) Determine the particle filter propagate and update equations. Specifically, in as simple 
(i) (i) (i)

a form as possible, express w , w , and xn in terms of the function f(·), the n|n n+1|n 

parameters N , σ2 (i)  
v and the observations {yk}., the initial set of particles x 0 

u

(c) Show that limn→∞ x̂n = x whenever E > 0. 

(d) As an alternative method of part (b), let us design the particle filter algorithm for the 
following state-space model 

' ' x = x + unn+1 n 

with 

u

' = f(x ) + vnyn n

' ∼ N (0, σ2 ∼ iid, N (0, σ2) for the known variance σ2 
xand  ), where  and x  un are 0 

'(i)' ' independent of {vk}. |x We use the importance density p (x  ) to obtain x ' ' |x n+1 n+1 n+1x nn 

v

(i)
in the propagate step and start with the same initial particles x0 as in part (b). 
We similarly treat the posterior approximations so produced as perfect and generate 

' ' the corresponding MAP estimate x̂ = x̂' (y1, . . . , yn) of x based on the same data. n n 
' Show that even for n = 1, the x generated by this new procedure can give a better n 

estimate of our original x than the algorithm of part (b). Specifically, show that 
' Pr [|x − x̂1| < |x − x̂1|] > 0 whenever E > 0. 

Problem 8.5 
In this problem, you will implement the particle filter to estimate states from measurements. 
Some things are left ambiguous, so state your assumptions in your solution. 

Consider the following state model 

x [t + 1] = 0.97x [t] + v [t], 

where v [t] is independently drawn Gaussian with variance σ2 .  

w

And consider this non-linear noisy measurement model 

y [t] = x 2[t] + w [t], 

where w [t] is independently drawn Gaussian with variance σ2 .  

Furthermore, the initial state has the following distribution: 

1, −1 ≤ x < −0.5 or 0.5 ≤ x < 1 
px [0](x) = 

0, otherwise 
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(a) Set up a simulation of this system to generate state and measurement sequences for 
t = 1, 2, . . . , T , to use in part (b). Use T = 50, σ2 = 10−4, and σ2 = 0.25. Plot a v	 w 
sample path of the states along with measurements. 

(b) Implement and run a particle filter on the data.	 Store the particles and weights for 
all time instances. Resample when Neff < 0.6N . 

Experiment with different values for N , the number of particles. What are the trade­
offs involved? 

For two different values of N , provide a plot of the particles shaded with their weight 
as a function of time. Mark instances of resampling on the plot. Your plots may use 
commands similar to: 

times = kron(1:T,ones(N,1)); scatter(times(:),particles(:),12,weights(:)); 

(c) Now, suppose the measurement is sometimes completely erased; thus, the new mea­
surement model is:  

y [t] = γ[t]x 2[t] + w [t],  

where γ[t] is a binary random variable, independent among all times, that takes value 
1 with probability p and value 0 with probability 1 − p. Repeat part (b) for this new 
measurement model, taking p to be 0.9. 
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