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Problem 7.1 
A function f over a scalar or vector-valued variable x is said to be convex if it 
satisfies: 

f (λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). 

Intuitively, convex functions are bowl-shaped, i.e. they curve upwards. For instance, 
the scalar function f(x) = x2 is convex, as shown: 

f(x)

f(y)

λf(x) + (1− λ)f(y)

f(λx+ (1− λ)y)

Convexity is an important property in optimization, because it implies that any local 
minimum of the function is also a global minimum. Furthermore, we can find this 
minimum using a greedy algorithm which moves downhill, such as gradient descent. 

Convex functions can also be characterized in terms of the second derivative when 
it exists. For a scalar function f , if f "" exists and is nonnegative everywhere, then 
f is convex. (Although this is not required for this problem, this criterion extends 
to functions of vectors as well. If the Hessian matrix of f exists everywhere and is 
positive semidefinite, then f is convex.) 

(a) Let qx and px be two distributions over the set {1, . . . , k}, parameterized by: 

qi = qx (i) 

pi = px (i) 

Show that the information divergence D(qx Ipx ) is convex with respect to qx , 
holding px fixed. 
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(b) Now suppose we have an undirected graphical model G where all of the variables
 
x = (x1, . . . , xN ) take values in {0, 1}. Let px denote the joint distribution 
defined by the network. Let q be an approximating distribution fully factorized q 
across nodes, i.e. qx(x) = i∈V bi(xi). Show that the information divergence 
D(qxIpx) is not necessarily convex with respect to b = (b1(1), . . . , bN (1))

T by 
giving a counterexample. 

(c) Briefly explain why parts (a) and (b) are not contradictory. 

Problem 7.2 
In this problem, you will work with an Ising model on a torroidal grid graph. Recall 
that an Ising model defined on a graph (V , E) with binary variables xi ∈ {−1, +1} is 
described by the factorization ⎧ ⎫ ⎨ ⎬ 

p(x; θ) ∝ exp θixi + θjkxj xk⎩ ⎭ 
i∈V (j,k)∈E 

and also recall that a torroidal grid graph is a grid graph with cyclic boundaries, as 
shown in Figure 7.1. 
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Figure 7.1
 

(a) In general, the mean field updates for a fully factorized approximation are given
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by:
 ⎫ ⎪⎪⎬ ⎧ ⎪⎪⎨ 
bi(xi) = K exp	 log ψC (xC ) bj (xj ) (1)⎪⎪⎩
C∈C s.t. xC \{xi} j∈C 

i∈C j �=i 

⎪⎪⎭


Use the general result to find the mean field updates for our Ising model
 
assuming 
q(x) =

(b) It is a useful exercise to derive the mean field updates for this special case. De-

q an approximating model that is fully factorized across nodes, i.e.
 

i∈V bi(xi). 

rive the mean field updates of part (a) for b1(x1) by writing out the appropriate 
information divergence and differentiating with respect to b1(x1). 

(c) Now	 we want to implement the algorithm in  on a particular model 
instance. Set θjk = 0.25 for all edges and θi = (−1)i for all i ∈ V = {1, . . . , 49}, 
where nodes are numbered as in Figure 7.1. Calculate the approximated mean 
for each node, τi for each i ∈ V. 

Problem 7.3 
In this problem, we consider a variational approximation to a multivariate Gaussian 
distribution using scalar Gaussian factors. Consider a Gaussian distribution px(x) = 
N (x|µ, J−1) for which we identify the two components of the vector x ∈ R2: 

x1 µ1	 J11 J12 x = , µ = , J = 
x2 µ2 J21 J22 

where J12 = J21 and each element of J is a scalar. The distribution is also assumed 
non-degenerate, i.e. J is positive definite. 

We want to approximate the distribution p with a factorized distribution qx(x) = 
b1(x1)b2(x2), for some b1 and b2 which we do not a priori constrain to be of a particular 
class of distributions. 

Analogously to the discrete case, if we drop reference to any graphical structure 
in the distribution (i.e. consider the graph to be fully connected) and consider the 
two-factor case, we have 

b1(x1) = K " exp {Eb2 [ln px(x)]}	 (2) 

where Eb2 denotes the expectation with respect to the variational distribution over 
node 2, i.e.
  


Eb2 [f(x2)] = f(x2)b2(x2) dx2
 

Note that we have replaced the unnormalized potential ψ with the joint probability
 
distribution px, which only affects the normalization constant K " . The expression for
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the optimal update to b2 is analogous to Eq.(2) with the factor b1 switched in to the 
expression. 

(a) Using the formula in Eq.(2), derive the optimal mean field updates for factors 
b1 and b2. You should show that the updated factors are themselves Gaussian 
densities, and use that observation and the technique of completing the square 
to find the normalization constant K " by comparison to the standard Gaussian 
form. 

(b) Show that the update equations are satisfied when the variational mean is equal 
to the true mean. Discuss why the optimal variational approximation makes 
intuitive sense. 

Problem 7.4 (Practice) 

(a) In our discussion of variational inference, we minimized D(bxIpx) with respect 
to bx. In this part, we consider the other direction. Suppose that calculating the 
marginals of px(x) is computationally intractable. Could it be tractable to find qNa fully factorized approximating distribution b(x) = i=1 bi(xi) by minimizing 
D(pxIbx) with respect to bx(x)? 

For the remainder of this question, we return to the usual variational objective func­
tion D(bxIpx). We restrict our attention to the following undirected graphical model: 

x1 x2

x3 x4

Associated with each node in the graph is a random variable xi, and the joint distri­
bution for these variables is of the form 

1 
px1,x2,x3,x4 (x1, x2, x3, x4) = 

Z 
ψi,j (xi, xj ) (3) 

(i,j)∈E 

where Z is the partition function, ψi,j (xi, xj ) is a clique potential for edge (i, j), and 
the set of edges is E = {(1, 2), (1, 3), (2, 4), (3, 4)}. 

(b) Determine whether the following statement is	 true or false. If you answer 
true, be sure to provide a proof; if you answer false, be sure to provide a 
counterexample. 
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Statement: Consider the family of approximating distributions
 

bx(x) = bi,j (xi, xj ) 
(i,j)∈Eb 

for some alternative edge set Eb. Then the optimal variational approximation in 
this family has the property that bi,j (xi, xj ) ∝ ψi,j (xi, xj ) for all (i, j) ∈ Eb ∩ E . 

(c) Consider families of approximating distributions	 bx(x) described by the four 
graphical models shown below. 

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

I II III IV

Suppose that we have a black-box procedure that can obtain the best variational 
approximations within each of these families. Rank the graphs in descending 
order of the quality of their resulting approximations as obtained from the black-
box procedure, and explicitly specify when there is a tie. Be sure to fully justify 
your reasoning. 

Hint: If graph G1 is contained in G2, try deriving the variational inference 
update rule for the graph G2. Argue that if the updates are contained in the 
set of approximating distributions given by G1, then there is a tie. 

Problem 7.5 (Practice) 
Consider the distribution over binary variables xi ∈ {0, 1} given by
 

n
 

p(x) ∝ 1 − xi	 (4) 
i=1 

(a) What undirected graphical model on n nodes is a minimal I-Map for this dis­
tribution? 

(b) To develop some intuition for approximations based on minimizing information 
divergence, consider approximating the distribution p in Eq.(4) with a fullyq
factorized distribution with only one parameter, i.e. q(x) = i

n 
=1 q(xi) (not­

ing that there is only one q(·) function). Show that there is only one unique 
minimizer for the expression D(q||p) and describe its form. 

(c) Now consider approximating the distribution	 p from Eq.(4) with a fully fac­
torized distribution in which there are different parameters at each node, i.e. q
q(x) = n

i=1 qi(xi). Show that there will be n symmetric minimizers of the 
D(q||p) expression and describe them. 
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(d) Note that the class of approximating distributions in both parts (b) and (c) 
correspond to fully disconnected graphs, i.e. graphs with empty edge sets. 
Suppose now that we allow our approximating distribution q to be represented 
as a product over potentials on maximal cliques for some (not fully-connected) 
graph. Describe the form of the clique potentials on the graph that would 
minimize the quantity D(q||p). 
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