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Problem 4.1 
Consider a binary-valued Markov process x [n], with transition probability distribution so 
that each successive value of x [n] has a probability of 3/4 of taking on the opposite value to 
that of x [n − 1], and where x [0] has equal prior probability of taking on the values 0 or 1. 
Suppose that we also have binary measurements y [n], where each of these, when conditioned 
on x [ · ] at the same time, is independent of x [ · ] at all other times, and 

7 
Pr[y [n] = x [n]|x[n]] = (1)

8 

Further, suppose we observe a value of 0 for y [n] for n = 0, 1, 2. 

(a) Calculate the α and β variables that would be computed, for example, if we ran the 
sum-product algorithm on this particular HMM. 

(b) For n = 0, 1, 2 compute the conditional distributions p(x [n]|y [k] = 0, k = 0, 1, 2) and
 
from these compute most probable individual values of x [n] at each of these times
 
given these observations.
 

(c) Compute the most probable trajectory given these observations, i.e., the set of values of 
x [n] for n = 0, 1, 2 that maximizes the joint conditional distribution p(x [0], x [1], x [2]|y [k] = 
0, k = 0, 1, 2). 

Problem 4.2 
In this problem, you will implement the sum-product algorithm with MATLAB and ana­
lyze the behavior of S&P 500 index over a period of time: Sept 30, 2013 to Sep 28, 2014 
(http://finance.yahoo.com). 

For each week, we measure the price movement relative to the previous week and denote 
it using a binary variable (+1 indicates up and −1 indicates down). The price movements 
from week 1 (the week starting on September 30, 2013) to week 52 (the week ending on 
September 28, 2014) are plotted in Figure 4.1. 

Consider a hidden Markov model in which xt denotes the economic state (good or bad) of 
week t and yt denotes the price movement (up or down) of the S&P 500 index. We assume 
that xt+1 = xt with probability 0.8, and pyt|xt (yt = +1|xt = “good” ) = pyt|xt (yt = −1|xt = 
“bad” ) = q. In addition, assume that px1 (x1 = “bad” ) = 0.2. 
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Figure 4.1 

Download the file sp500.mat and load it into MATLAB. The variable price move contains
 the binary data above. Implement the sum-product algorithm and submit a of 
the code (you don’t need to include the code for loading data, generating figures, etc.). 

(a) Assume that	 q = 0.7. Plot pxt|y(xt = “good” |y) for t = 1, 2, . . . , 52. What is the 
probability that the economy is in a good state in week 52? 

(b) Repeat (a) for q = 0.9. Compare the results of (a) and (b). 

Problem 4.3 
Consider the graphical model in Figure 4.2. Draw a factor graph representing this graph-
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Figure 4.2 

ical model. Show that you can recover the usual sum-product formulae for the graph in 
Figure 4.2 from the factor graph message-passing equations. 

Problem 4.4 
Let G = (V, E) is an undirected tree graph, with factorization   

p(X = x) = ϕs(xs) ψst(xs, xt)	 (2) 
s∈V (s,t)∈E 
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Consider running sum-product algorithm on G with initialization
 

ms→t(xt) = 1,mt→s(xs) = 1, ∀(s, t) ∈ E, ∀xs, xt ∈ X 

(a) In this subproblem, we will prove by induction that the sum-product algorithm, with 
the parallel schedule, converges in at most diameter of the graph iterations. (Diameter 
of the graph is the length of the longest path.) 

(i) For D = 1, the result is immediate. Consider a graph of diameter D. At each time 
step, the message that each of the leaf nodes sends out to its neighbors is constant 
because it does not depend on messages from any other nodes. Construct a 
new undirected graphical model G' by stripping each of the leaf nodes from the 
original graph. How should the potentials be redefined so that the messages 
along the remaining edges will be the same in both graphs? 

(ii) Argue that G' has diameter strictly less than D − 1. 

(iii) Thus, after at most D − 2 time steps, the messages will all converge. Show that 
after “placing back” the leaf nodes into G' and running one more time step, each 
message will have converged to a fixed point. 

∗(b) Prove by induction that the message fixed point m satisfies the following property: 
For any node t and s ∈ N(t), let Ts be the tree rooted at s after the edge (s, t) is 
removed. Then  

∗ m (xt) = ψ(xs, xt) ϕ(xv) ψ(xi, xj ).s→t

{xv |v∈Ts} v∈Ts (i,j)∈Ts 

∗Hint: Induct on the depth of the subtree and use the definition of m (xt).s→t

(c) Use part (b) to show that 

∗ p(xs) ∝ ϕs(xs) m (xs)t→s

t∈N(s) 

for every node of the tree. 

(d) Show that for each edge (s, t) ∈ E, the message fixed point m ∗ can be used to compute 
the pairwise joint distribution over (xs, xt) as follows: 

∗ ∗ p(xs, xt) ∝ ϕs(xs)ϕt(xt)ψst(xs, xt) m (xs) m (xt).u→s v→t

u∈N (s)\t v∈N (t)\s 

Problem 4.5 
Consider the graphical model in Figure 4.3. 

(a) Draw a factor graph representing the graphical model and specify the factor graph 
message-passing equations. For this particular example, explain why the factor graph 
message-passing equations can be used to compute the marginals, but the sum-product 
equations cannot be used. 

3
 

∏ ∏

∏

∏ ∏



5

2 3

1

4

Figure 4.3 

(b) Define a new random variable x6 = {x1, x2, x3}, i.e., we group variables x1, x2, and x3 

into one variable. Draw an undirected graph which captures the relationship between 
x4, x5, and x6. Explain why you can apply the sum-product algorithm to your new 
graph to compute the marginals. Compare the belief propagation equations for the 
new graph with the factor graph message-passing equations you obtained in part (a). 

(c) If we take the approach from part (b) to the extreme, we can simply define a random 
variable x7 = {x1, x2, x3, x4, x5}, i.e., define a new random variable which groups all five 
original random variables together. Explain what running the sum-product algorithm 
on the corresponding one vertex graph means. Assuming that we only care about 
the marginals for x1, x2, . . . , x5, can you think of a reason why we would prefer the 
method in part (b) to the method in this part, i.e., why it might be preferable to 
group a smaller number of variables together? 

Problem 4.6 (Practice) 
Consider a random process x [n], n = 0, 1, 2, . . . defined as follows: 

x [0] ∼ N (1, 1) (3) 

x [n + 1] = a[n]x [n] , n = 0, 1, 2, . . . (4) 

where a[n] is a sequence of independent, identically distributed random variables, also in­
dependent of x [0], and which only take on the values ±1, where 

1 
Pr[a[n] = +1] = Pr[a[n] = −1] = (5)

2 

(a) Is x [n] a Markov process? Justify your answer. 

(b) What is the probability distribution for x [1]? 
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Suppose now that we have the following sequence of observations: 

y [n] = x [n] + v [n] , n = 1, 2, . . . (6) 

where v [n] is zero-mean, white, Gaussian noise, independent of x [0] and a[n], with variance 
of 1. 
In the rest of this problem we examine the recursive computation of 

pn|n(x) = px [n]|y [1],...,y [n](x) 

and 
pn+1|n(x) = px [n+1]|y [1],...,y [n](x) . 

(c) Show that p1|1(x) is a mixture of two Gaussian distributions: 

2   
p1|1(x) = wi(1|1)N x; x̂i(1|1), P (1|1) , (7) 

i=1   
where the notation N x; µ, σ2 indicates a Gaussian distribution with mean µ and 
variance σ2 evaluated at x. Provide explicit expressions for the mean of each Gaussian 
distribution x̂i(1|1), i = 1, 2, variance P (1|1), and the weights wi(1|1), i = 1, 2 (since 
these weights sum to 1, it is sufficient to specify explicit quantities to which they are 
proportional). 

Hint: you may find it useful to write 

p1|1(x) = px [1]|y [1](x|y) 

= px [1]|y [1],a[0](x|y, a)pa[0]|y [1](a|y) 
a 

where the sum is over the two possible values, a = ±1, of a[0]. 

(d) Predicting ahead one step, the distribution p2|1(x) can be written as 

K   
p2|1(x) = wi(2|1)N x; x̂i(2|1), P (2|1) . (8) 

i=1 

Specify the number of terms, K, in this sum as well as expressions for the weights, 
estimates, and variances in (8) in terms of the corresponding quantities in (7). 

(e) In general, pn|n(x) and pn+1|n(x) will also be mixtures of Gaussian distributions. 

K(n|n)   
pn|n(x) = wi(n|n)N x; x̂i(n|n), P (n|n) (9) 

i=1 

K(n+1|n)   
pn+1|n(x) = wi(n + 1|n)N x; x̂i(n + 1|n), P (n + 1|n) . (10) 

i=1 
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(i) What are the integers K(n|n) and K(n + 1|n)? 

(ii) Specify how the parameters P (n+1|n), x̂i(n+1|n) and wi(n+1|n) are computed 
from the parameters in (9). 

(iii) Determine P (n|n). 
(iv) Specify	 how the parameters at the next step x̂i(n + 1|n + 1) and 

wi(n + 1|n + 1) are computed from the parameters in (10) and the new mea­
surement y [n + 1]. Note that, once again, since the weights sum to 1, you can 
specify explicit quantities to which they are proportional. 
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