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Problem 2.1 
Consider an undirected graph G = (V, E) with n vertices. Let each vertex i ∈ V be associated 
with a non-negative weight vi and each edge e ∈ E be associated with a non-negative weight 
we. 

(a) An independent set of the graph G is any subset of vertices such that no two vertices 
in that subset are connected by an edge in E . For example, the empty set is a valid 
independent set of G. Other examples of independent sets include singleton subsets 
of V, i.e. {i} for any i ∈ V . An independent set can be represented as a binary vector 
of dimension n = |V | with I = [Ii] ∈ {0, 1}|V | representing the subset of vertices 
{i ∈ V : Ii = 1}. Our interest is in the distribution over all independent sets of G 
with the probability of an independent set I proportional to: 

 
P (I) ∝ exp viIi . 

i∈V 

(i) List all of the independent sets of the graph depicted in Figure 2.1. 

(ii) Provide a representation of the distribution over independent sets for a general 
G in terms of an undirected graphical model. 

(b) A matching of the graph G is any subset of edges such that no two edges in that subset 
share a vertex. For example, the empty set is a valid matching. Other examples of 
matchings include singleton subsets of E , i.e. {e} for any e ∈ E . A matching can be 
represented as a binary vector of dimension |E| with M = [Me] ∈ {0, 1}|E| representing 
the subset of edges {e ∈ E : Me = 1}. Our interest is in the distribution over all 
matchings of G with the probability of a matching M proportional to: 

 
P (M) ∝ exp weMe . 

e∈E 

(i) List all of the matchings of the graph depicted in Figure 2.1. 

(ii) For the graph given in Figure 2.1, draw an undirected graphical model represen­
tation of the distribution for matchings on that graph and give the potentials. 
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Figure 2.1 

Problem 2.2 
The Hammersley-Clifford theorem gives us a canonical method to turn an undirected graph 
into a factor graph. Specifically, assume that we are given a graph G and a strictly positive 
distribution P that is Markov with respect to G. Then, Hammersley-Clifford tells us that P 
can be written as a product of potential functions for each maximal clique. Thus, to turn an 
undirected graph into a factor graph, we can simply define a factor node for each maximal 
clique in the graph. Figure 2.2 depicts an example graph and the associated factor graph. 
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Associated

Figure 2.2 

(a) Show that the factor graph produced by the canonical construction can be exponen­
tially larger than the original graph. Specifically, show that there exists a constant 
c > 1 such that for all sufficiently large n, there exists an undirected graph with n 

nvertices such that the associated factor graph has at least c vertices. 

(b) (Practice) Show that there is a polynomial time algorithm, whose run time is no 
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greater than a polynomial function of the number of vertices n, that given as input 
an undirected graph G, determines whether or not the factor graph associated to G is 
a tree. 

Note that the naive algorithm that computes the factor graph and then checks if it is 
a tree is not polynomial time, because from part (a) we know that just writing down 
the factor graph can take exponential time. 

In your solution, you may want to use the following concepts and results: 

–	 Recall that a graph is chordal if any cycle of length 4 or more nodes has a chord, 
which is an edge joining two nodes that are not adjacent in the cycle. Testing 
the chordality of a graph can be done in linear time (for fun, try to come up with 
the algorithm). 

–	 We use K4 to denote a clique containing 4 nodes, and say a graph contains K4 

if it has a clique of 4 nodes. We also use K to denote the graph generatedK4 

from deleting one edge from K4, and say a graph contains KK4 if it has such a 
subgraph. Testing whether a graph contains KK4 can be done in polynomial timee	 o 

n 
(e.g. a brute-force search would take as little time as = O(n4)).
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Problem 2.3 

Consider the directed graphical model shown in Figure 2.3: 

a1

b1c1

d1

d2

c2

b2

a2

Figure 2.3 

(a) You have four coins, labeled A, B, C, and D that have different biases. The outcome 
of any coin flip is Heads or Tails. You flip all four coins. Call these random outcomes 
a1, b1, c1, and d1. 

Consider the following procedure: 

Step 1. If a1 = b1, you flip subset X of the coins again. 

3
 



Step 2. If b1 = c1, you flip subset Y of the coins again.
 

Step 3. If c1 = d1, you flip subset Z of the coins again.
 

Step 4. If d1 = a1, you flip subset W of the coins again.
 

Let a2, b2, c2, and d2 be states of coins A, B, C, and D, respectively, after the above 
procedure. Which coins are flipped at each step if the given directed graph is a perfect 
map for a1, b1, c1, d1, a2, b2, c2, and d2? For each step, determine the corresponding 
subset (X , Y, Z, and W) that needs to be flipped. 

(b) List all conditional and unconditional independencies among a2, b2, c2, and d2. NOTE: 
You do not need to list any conditional or unconditional independencies that involve 
any of a1, b1, c1, or d1, and you should assume that those variables are unobserved. 

(c) Draw a four-node, undirected graphical model that is a minimal I-map over the vari­
ables a2, b2, c2, and d2, assuming that outcomes a1, b1, c1, and d1 are unobserved. 

Problem 2.4 
Let G = {V, E} be an undirected graph and let x be a collection of random variables defined 
on its nodes. Recall from class, that a distribution over x is (globally) Markov with respect 
to G if, for any disjoint subsets of nodes A, B, C such that B separates A from C, the 
statement xA ⊥⊥ xC |xB is satisfied. Now, here are two other notions of Markovianity. 

A distribution is pairwise Markov with respect to G if, for any two nodes α and β not 
directly linked by an edge in G, the corresponding variables xα and xβ are independent 
conditioned on all of the remaining variables, i.e. 

∀α, β ∈ V, (α, β) / ⊥⊥ xβ |xV\{α,β}∈ E : xα 

A distribution is locally Markov with respect to G if any xα, when conditioned on the 
variables on the neighbors of α, is independent of the remaining variables, i.e. 

∀α ∈ V : xα ⊥⊥ xV\{α}\N (α)|xN (α) 

Decide if each of the following statements is true or false and provide your reasoning. 

(a) If a distribution is globally Markov with respect to G, then it is locally Markov with 
respect to G. 

(b) If a distribution is locally Markov with respect to G, then it is globally Markov with 
respect to G 

(c) If a distribution is locally Markov with respect to G, then it is pairwise Markov with 
respect to G. 

(d) If a distribution is pairwise Markov with respect to G, then it is locally Markov with 
respect to G. 
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Problem 2.5 (Practice)
 
Recall that a perfect map for a distribution P is a graph G (directed or undirected) such 
that P satisfies a conditional independence relationship if and only if this conditional inde­
pendence relationship is implied by G. 

(a) Construct a distribution which has no perfect map.	 Specifically, no undirected or 
directed graph should be a perfect map for the distribution. 

(b) Construct a directed graph and a distribution such that the directed graph is a perfect 
map for the distribution, but no undirected graph is a perfect map for the distribution. 

(c) Do the reverse of part (b), i.e., construct an undirected graph and a distribution such 
that the undirected graph is a perfect map for the distribution, but no directed graph 
is a perfect map for the distribution. 

(d) Prove that for any undirected graph G, there exists some probability distribution P 
such that G is a perfect map for P . 
(Hint: Start with a collection of independent random variables y1, y2, . . . , yN , where 
N may be much larger than n, the number of vertices of G. Then, for each vertex of 
G, try to associate a cleverly chosen subset of the yi.) 

(e) Prove	 that for any DAG (directed acyclic graph) G, there exists some probability 
distribution P such that G is a perfect map for P . 

(f) This part is concerned with the opposite question to parts (b) and (c) – when can a 
distribution P have a perfect map that is an undirected graph and a perfect map that 
is a directed graph? Two equivalent answers to this question are stated below: 

(i) For an arbitrary undirected graph G, there exists a directed graph that implies 
exactly the same conditional independencies as G if and only if G is chordal. 

(ii) For an arbitrary DAG G, there exists an undirected graph that implies exactly 
the same conditional independencies as G if and only if moralizing G does not 
add any edges. 

Prove either statement (i) or (ii), i.e., you can prove whichever version you find easier 
to prove. 

(g) Parts (b) and (c) show	 that there are distributions for which directed graphs can 
be perfect maps but for which no undirected graphs can be perfect maps, and vice 
versa. From parts (d) and (e), we also know that no undirected or directed graphs are 
“useless”, i.e., there is always some distribution for which a given graph is a perfect 
map. 

Part (f) characterizes when a distribution can have a directed graph and an undirected 
graph as perfect maps. So, the final cases to consider are the following: 

(i) Can two different undirected graphs be perfect maps for the same distribution? 

(ii) Can two different directed graphs be perfect maps for the same distribution? 
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Show that the answer to part (i) is no, but that the answer to part (ii) is yes. Thus, 
we can throw away some directed graphs without changing the set of distributions 
that have directed graphs as perfect maps, but throwing away any undirected graph 
will shrink the set of distributions that have undirected graphs as perfect maps. 

Problem 2.6 
We define a graph as a maximal D-map for a family of distributions if adding even a single 
edge makes the graph no longer a D-map for that family. 

(a) Consider a family of probability distributions defined on a set of random variables 
{x1, x2, x3, x4} such that xk ⊥⊥ xl for all k = l.
 

Using the given independence statements, draw an undirected maximal D-map for
 
this family.
 

(b) Find a directed graphical model that is a maximal D-map of the family of distributions 
represented by the following undirected graphical model: 

x1 x3 x5

x2 x4 x6

No additional variables are allowed.
 
Hint: Consider the effects of adding V-structures to your graph.
 

(c) Is it possible to find a family of distributions whose undirected minimal I-map has 
fewer edges than its undirected maximal D-map? If so, give an example distribution 
and the undirected graphs for the minimal I-map and maximal D-map. If not, explain 
why not. 

Recall that a graph is a minimal I-map for a family of distributions if removing even 
a single edge makes the graph no longer an I-map for that family. 

Problem 2.7 (Practice) 
Recall that the factor graph associated with a directed graph has one factor for each local 
conditional defined on the graph. Similarly, the factor graph associated with an undirected 
graph has one factor for each potential defined on the graph. (To ensure that the undirected 
graph completely specifies the associated factor graph, let us assume that there are no 
potentials associated with non-maximal cliques.) 

(a) Let G be a polytree, and let GM be its moral graph. Let F denote the factor graph 
associated with G, and let FM denote the factor graph associated with GM . For every 
vertex i in G with no parents, add a factor fi to FM that is connected to the variable 
node i. Prove that F and FM are identical. i.e., the factor graph associated with the 
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moral graph of a polytree is the same as the factor graph associated with the polytree, 
modulo the single-variable factors. 

(Hint: Use induction. Work through the nodes in a topological ordering, building 
GM , FM and F .) 

(b) Prove that the factor graph associated with a polytree is a factor tree. 
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