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Problem 1.1 

(a) Let x and y be independent identically distributed random variables with com­
mon density function  

1 0 ≤ α ≤ 1 
p(α) =

0 otherwise 
. 

Let s = x + y . 

(i) Find and sketch ps (s). 

(ii) Find and sketch px |s (x|s) vs. x, with s viewed as a known real parameter. 

(iii) The conditional mean of x given s = s is  +∞ 

E [x | s = s] = x px |s (x|s) dx. 
−∞ 

Find E [x | s = 0.5]. 

(iv) The conditional mean of x given s (s viewed as a random variable) is  +∞ 

mx |s = E [x |s] = x px |s (x|s) dx. 
−∞ 

Since mx |s is a function of the random variable s, it too is a random variable. 
Find the probability density function for mx |s . 

(b) Let x and y be independent identically distributed geometric random variables 
with parameter p. That is, x and y have common probability mass function 

p[n] = p(1 − p)n , n = 0, 1, . . . . 

Let s = x + y . 

(i) Find and sketch ps [s]. 
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(ii) Find and sketch px |s [x|s] vs. x, with s viewed as a known integer parameter. 

(iii) Find the conditional mean of x given s = s, which is defined as 

∞0 
E [x | s = s] = x px |s [x|s]. 

x=−∞ 

(iv) The conditional mean of x given s (s viewed as a random variable) is 

∞0 
mx |s = E [x |s] = x px |s [x|s]. 

x=−∞ 

Since mx |s is a function of the random variable s, it too is a random variable. 
Find the probability mass function for mx |s . 

Problem 1.2 

An important concept that arises frequently in statistical signal processing, control, 
and machine learning is that of conditional independence. Specifically x and y might 
represent random variables or vectors of interest — e.g., they might be consecutive 
samples of a random sequence or one might be observed and the other the quantity 
that we wish to estimate based on that observation. Typically, there will be some 
statistical dependency between x and y (there better be statistical dependency if we 
want to use one of them to estimate the other!), and in many cases that statistical 
dependency is captured through the intermediary of another random variable or vec­
tor, z . What we mean by this is that x and y are conditionally independent given 
z : 

px ,y |z (x, y|z) = px |z (x|z)py |z (y|z) 

(a) Suppose that z , w1, and w2 are independent random variables. Use these three 
random variables to construct two other random variables x and y that are not 
independent, but are conditionally independent given z . 

(b) Show that x and y are conditionally independent given z if and only if the joint 
distribution for the three variables factors in the following form: 

px ,y ,z (x, y, z) = h(x, z)g(y, z) . 

Problem 1.3 (Exercise 2.9 in Koller/Friedman) 
Prove or disprove (by providing a counterexample) each of the following properties 
of independence. 

(a) x ⊥⊥ (y , w)|z implies x ⊥⊥ y |z . 
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(b)	 x ⊥⊥ y |z and (x , y) ⊥⊥ w |y imply x ⊥⊥ w |z . 

(c)	 x ⊥⊥ (y , w)|z and y ⊥⊥ w |z imply (x , w) ⊥⊥ y |z . 

(d)	 x ⊥⊥ y |z and x ⊥⊥ y |w imply x ⊥⊥ y |(z , w). 

Problem 1.4 (Practice) 

Determine whether each of the following separate statements is true or false. If 
you answer true, be sure to provide a proof; if you answer false, be sure to provide 
a counter-example. 

(a)	 x ⊥⊥ (y , z) implies x ⊥⊥ y |z . 
In other words, if x , y , z are three random variables such that x is independent 
of (y ,z), then x is conditionally independent of y given z . 

(b)	 u ⊥⊥ v and u ⊥⊥ w and v ⊥⊥ w imply u ⊥⊥ v |w . 
In other words, if u, v , w are a collection of pairwise-independent random vari­
ables, then u and v are conditionally independent given w . 

Problem 1.5 

Consider the following random variables. x1, x2 and x3 represent the outcomes of 
three (independent) fair coin tosses. x4 is the indicator function of the event that x1 

= x2, and x5 is the indicator function of the event that x2 = x3. 

(a) Specify a directed graphical model (give the directed acyclic graph and local 
conditionals) that describes the joint probability distribution. 

(b) List all conditional independencies that are implied by the graph. 

(c) List any additional conditional independencies that are displayed by this prob­
ability distribution but are not implied by the graph. 

(d) If the coins were biased, would your answer to part (c) change? 

Problem 1.6 

Consider the directed graphs shown in Figure 1.6. 

(a) Determine the maximal set B for which x1 ⊥⊥ xB |x2 for the graph G1. 

(b) Determine the maximal set B for which x1 ⊥⊥ xB |x2 for the graph G2. 
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Problem 1.7 
In this problem we’ll show by example that the distribution of a graphical model 
need not have a factorization of the form in the Hammersley–Clifford Theorem if the 
distribution is not strictly positive. In particular, we’ll take a look at a distribution 
on the following simple 4-node cycle: where at each node we have a binary random 

1 2

4 3

variable, xi, i = 1, 2, 3, 4. Consider a distribution p(x1, x2, x3, x4) which assigns a 
probability of 1/8 to each of the following set of values of (x1, x2, x3, x4): 

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0) 

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1) 

and a value of 0 to all other sets of values of (x1, x2, x3, x4). 

(a) We first need to show that this distribution is Markov on our graph.	 To do 
this, it shouldn’t be difficult to see that what we need to show are the following 
conditions: 

• The pair of variables x1 and x3 are conditionally independent given (x2, x4) 

• The pair of variables x2 and x4 are conditionally independent given (x1, x3) 

We’ll do this as follows: 

(i) First, show that if we interchange x1 and x4 and interchange x2 and x3 we 
obtain the same distribution, i.e., p(x1, x2, x3, x4) = p(x4, x3, x2, x1). This 

4
 



implies that if we can show the first of the conditions listed above, then 
the other is also true. 

(ii) Now, show that whatever pair of values you choose for (x2, x4), we then 
know either x1 or x3 with certainty (e.g., what is the conditional distribu­
tion for x1 conditioned on (x2, x4) = (0, 1)). Since we know either x1 or 
x3 with certainty, then conditioning on the other one of these obviously 
provides no additional information, trivially proving conditional indepen­
dence. 

(b) What we now need to show is that the distribution can’t be factored in the way 
stated in the Hammersley–Clifford Theorem. We’ll do this by contradiction. 
Noting that the maximal cliques in our graph are just the edges and absorbing 
the single node compatibility functions into the maximal clique terms and the 
proportionality constant 1/Z into any of these terms, we know that if our dis­
tribution has the factorization implied by Hammersley–Clifford, we can write it 
in the following form: 

p(x1, x2, x3, x4) = φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1) 

Show that assuming that our distribution has such a factorization leads to a con­
tradiction by examining the values of p(0, 0, 0, 0), p(0, 0, 1, 0), and p(0, 0, 1, 1), 
and p(1, 1, 1, 0). 
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