System Identification

6.435

SET 8

- Convergence and Consistency
- Informative Data (relation to p.e.)
- Convergence to the true parameters (role of identifiability)

Munther A. Dahleh

Convergence and Consistency

Estimator

$$Z^N \longrightarrow \widehat{\theta}_N \in D_m$$

<u>Question</u>: Given certain properties of Z^N , and a particular method for arriving to $\widehat{\theta}_N$, what properties does $\widehat{\theta}_N$ have?

- Does $\widehat{\theta}_N \longrightarrow \theta^*$?
- Does $\widehat{\theta}_N \longrightarrow$ "set" ?

Ergodicity Result

Theorem (Ljung)

Let $\{G_{\theta}(q), \theta \in D_{\theta}\}$ be a uniformly stable family of filters, ω_{θ} is a family of deterministic signals such that

$$|\omega_{\theta}(t)| \leq C_W \quad \forall \quad \theta \in D_{\theta}$$

Let the signal $s_{\theta}(t)$ be defined (for each θ) as

$$s_{\theta}(t) = G_{\theta}(q)v(t) + \omega_{\theta}(t)$$

where v(t) is a quasi-stationary signal generated by

$$v(t) = H_t(q)e(t)$$

where H_t is a uniformly stable family of filters, and e is white with $E\left(ee^T(t)\right) = \Lambda$. Then,

$$\sup_{\theta \in D_{\theta}} \left\| \frac{1}{N} \sum_{t=1}^{N} s_{\theta}(t) s_{\theta}^{T}(t) - E s_{\theta}(t) s_{\theta}^{T}(t) \right\| \to 0$$

as $N \to \infty$ w.p.1

Assumptions

1. Data is generated in either open loop or close loop:

$$y = H_1\omega + H_2e_o$$
 ω - exogenous input $u = H_3\omega + H_4e_o$ e_o - noise

```
 \begin{cases} \omega(t) & - \text{ deterministic, bounded} \\ e_o(t) & - \text{ white signal, and bounded} \\ & \text{moments of order higher than 4.} \end{cases}
```

 $\begin{cases} H_i \text{ are stable transfer functions.} \\ y \& u \text{ are jointly quasi-stationary} \end{cases}$

<u>Remark</u>: We view e_o as a stochastic signal & everything else as deterministic. Hence, $E(\cdot)$ is with respect to e_o .

True system:

$$\delta$$
: $y(t) = G_o(q)u + H_o(q)u$
 e_o white, bdd 4 moments.

Model structure:

$$m: \{G(q,\theta), H(q,\theta) | \theta \in D_m\}$$

Feasible set:

$$D_T(\xi, m) : \left\{ \theta \in D_m | G\left(e^{i\omega}, \theta\right) = G_o\left(e^{i\omega}\right), \right.$$
$$H\left(e^{i\omega}, \theta\right) = H_o\left(e^{i\omega}\right); -\pi \le \omega \le \pi \right\}$$

Input Choice:

$$u = -F(q)y + \omega$$

Such that F stabilizes G_o . Then previous assumption on Data holds.

Informative Data

 Informativity is a notion that will allow us to distinguish between different models in a structure.

•
$$Z^N = \begin{pmatrix} u(t) & , & y(t) & ; & t \le N-1 \end{pmatrix}$$

 $Z^\infty = \begin{pmatrix} u(t) & , & y(t) & ; & \forall & t \end{pmatrix}$

• <u>Def</u>: A quasi-stationary data set Z^{∞} is informative enough with respect to a model set m^* if for any $W_1, W_2 \in m^*$,

$$\bar{E}((W_1(q)-W_2(q))Z(t))^2 = 0 \Rightarrow W_1\left(e^{i\omega}\right) = W_2\left(e^{i\omega}\right) \quad \text{a.e.}$$

- Detail $(W_1(q) W_2(q))Z(t) = \Delta W_u(q)u + \Delta W_y(q)y$
- <u>Def</u>: Z^{∞} is informative if it is informative enough with respect to all LTI models.

- Thm: Z^{∞} is informative if the spectrum of $z=\begin{bmatrix}u&y\end{bmatrix}^T$ is strictly positive definite $\forall \quad \omega$
- Proof: Let $\tilde{W} = W_1 W_2$

•
$$\bar{E}(\tilde{W}(q)z)^2 = 0$$
 \Leftrightarrow $\int_{-\pi}^{\pi} \tilde{W}\left(e^{i\omega}\right) \Phi_z(\omega) \tilde{W}^T\left(e^{-i\omega}\right) d\omega = 0$

$$\updownarrow$$

$$\tilde{W}(q) = 0 \Leftrightarrow \tilde{W}\left(e^{i\omega}\right) \Phi_z(\omega) \tilde{W}^T\left(e^{-i\omega}\right) = 0 \quad \text{a.e.}$$

$$\Rightarrow \Phi_z(\omega) > 0$$
 a.e.

• What is the relation between informativity of data & persistence of excitation of an input? Recall, it is the input that you can choose!

Informativity vs. Persistence of Excitation

• Thm: Let $m = \{G(q,\theta), H(q,\theta) | \theta \in D_m\}$ and assume that

$$G(q,\theta) = \frac{B(q)}{F(q)}$$

where \boldsymbol{B} , \boldsymbol{F} are polynomials of order n_b, n_f respectively. If ${m u}$ is p.e. of order n_b+n_f , then the data record $[{m u}, {m y}]$ is informative with respect to m.

Proof: We claim that data is informative if for any

$$\Delta G = G_1 - G_2, G_i \in m,$$

$$\left| \Delta G \left(e^{i\omega} \right) \right| \Phi_u \left(e^{i\omega} \right) = 0 \Leftrightarrow \Delta G = 0$$

If this holds, then u is p.e. of order $n_b + n_f$, $\Phi_u(\omega) > 0$ for at least $n_b + n_f$ frequencies.

• Proof of Claim:

$$W_1 z - W_2 z = \hat{y}_1 - \hat{y}_2 = (y - \hat{y}_2) - (y - \hat{y}_1) = \varepsilon_2 - \varepsilon_1$$

$$\varepsilon_1 = H_1^{-1} (y - G_1 u)$$

$$\varepsilon_2 = H_2^{-1} (y - G_2 u) \qquad \text{where} \quad G_i, H_i \in m$$

also note that

$$\varepsilon_2 = H_2^{-1}(G_o u - G_2 u + H_o e);$$
 G_o, H_o are the true models.

$$\Delta \varepsilon = \varepsilon_2 - \varepsilon_1$$

$$= H_2^{-1}(y - G_2 u) - H_1^{-1}(y - G_1 u)$$

$$= H_1^{-1} \left[G_1 u - y + \frac{H_1}{H_2} y - \frac{H_1}{H_2} G_2 \right]$$

$$= H_1^{-1} \left[(G_1 - G_2) u + \frac{(H_1 - H_2)}{H_2} y - \frac{(H_1 - H_2)}{H_2} G_2 u \right]$$

$$= H_1^{-1} [\Delta G u + \Delta H \varepsilon_2]$$

$$\bar{E}(\Delta \varepsilon)^2 = \bar{E} \left(\frac{1}{H_1} \left[\Delta G u + \frac{\Delta H}{H_2} (G_o - G_2) u + \frac{\Delta H}{H_2} H_o e \right] \right)^2$$

$$= \int_{-\pi}^{\pi} \frac{1}{|H_1|^2} |\Delta G + \frac{\Delta H}{H_2} (G_o - G_2) |^2 \Phi_u(\omega) d\omega$$

$$+ \int_{-\pi}^{\pi} \frac{|\Delta H|^2}{|H_1|^2 |H_2|^2} |H_o|^2 \lambda^2 d\omega = 0$$

 \Rightarrow Both integrals = 0

$$\Rightarrow \frac{|\Delta H|^2}{|H_1|^2|H_2|^2}|H_0|^2\lambda^2 = 0 \qquad \text{But } H_0 \neq 0$$

$$\Rightarrow |\Delta H|^2 = 0 \Rightarrow H_1 = H_2$$
 a.e.

(Comment: Richness of noise guarantees $H_1 = H_2$).

$$\Rightarrow \frac{1}{H_1^2} |\Delta G|^2 \Phi_u(\omega) = 0$$
 a.e.

i.e.
$$\bar{E}(\Delta\varepsilon)^2=0$$
 \Leftrightarrow
$$\begin{cases} H_1=H_2\left(e^{i\omega}\right)\\ |\Delta G|^2\Phi_u(\omega)=0 \end{cases}$$

Informativity \Leftrightarrow Persistence of excitation w.r. to G.

Assumptions

 $\underline{\mathsf{Def}}$: m is uniformly stable if the family of filters

$$\left\{W(q,\theta), \Psi(q,\theta), \frac{d}{d\theta}\Psi(q,\theta)\right\}$$
 is uniformly stable.

More assumptions:

- 1) Model structure is uniformly stable.
- 2) $V_N''(\theta) \stackrel{\triangle}{=}$ The Hessian is non-singular, at least locally around $\min_{\theta} V(\theta)$.
- 3) Data is informative.

Analysis of Prediction Error Methods

$$\widehat{\theta}_{N} = \underset{\theta \in D_{m}}{\operatorname{argmin}} \ V_{N}\left(\theta, Z^{N}\right)$$

Quadratic objective
$$V_N\left(\theta,Z^N\right) = \frac{1}{N}\sum_{t=1}^N \varepsilon^2(t,\theta)$$

$$\varepsilon(t,\theta) = y(t) - W_z = (1 - W_y)y + (-W_u)u$$

It follows that:

$$\varepsilon(t,\theta) = H_5(q,\theta)w + H_6(q,\theta)e_o, \quad H_5, H_6$$
 are uniformly stable.

This is a result of uniform stability of W, and the fact that y, u are generated by $W \& e_o$ through stable filters.

Lemma: Let the assumptions on

- Data generation
- Uniform stability of model structure

hold. Then,

$$\sup \left\| \frac{1}{N} \sum_{t=1}^{N} \varepsilon^{2}(t,\theta) - E\varepsilon^{2}(t,\theta) \right\| \to 0 \quad \text{as } N \to \infty \quad \text{w.p.1}$$

Proof: follows immediately from the basic ergodicity theorem.

Let

$$\bar{V}(\theta) = \bar{E} \frac{1}{2} \varepsilon^2(t,\theta)$$

$$D_{C} = \underset{\theta \in D_{m}}{\operatorname{argmin}} \ \bar{V}(\theta) = \left\{ \theta^{'} | \theta^{'} \in D_{m}, \bar{V}\left(\theta^{'}\right) = \underset{\theta}{\min} \ \bar{V}(\theta) \right\}$$

(all possible solutions).

Thm: Under the assumptions of the lemma,

$$\widehat{ heta}_N o D_C$$
 w.p.1 as $N o\infty$
$$\Big(\inf_{ heta\in D_C}\Big|\widehat{ heta}_N- heta\Big| o 0 \quad \text{w.p.1} \quad \text{as } N o\infty\Big)$$

<u>Proof</u>: From previous lemma, $V_N\left(\theta,Z^N\right)$ converges to $\bar{V}(\theta)$ uniformly on D_m . The result follows immediately from this.

Example

$$\delta$$
: $y+a_0y(t-1) = b_0u(t-1)+e_0(t)c_0e_0(t-1)$ u, e_0 are white.

Model structure m: $\hat{y} = -ay(t-1) + bu(t-1)$

$$\theta = \left(\begin{array}{c} a \\ b \end{array}\right)$$

Previously, we have computed all the expectations for

$$\hat{\theta}_N = \operatorname{argmin} \frac{1}{N} \sum_{t=1}^N |y - \hat{y}(t)|^2$$
 (Least Squares)

$$\bar{V}(\theta) = \bar{E}\varepsilon^{2}(t,\theta) = \bar{E}(y(t) + ay(t-1) - bu(t-1))^{2}$$

$$= r_{o}(1 + a^{2} - 2aa_{o}) + b^{2} - 2bb_{o} + 2ac_{o}$$

$$\& \quad r_{o} = Ey^{2} = \frac{b_{o}^{2} + c_{o}(c_{o} - a_{o}) - a_{o}c_{o} + 1}{1 - a_{o}^{2}}$$

The values $\begin{cases} \hat{a} = a_o - \frac{c_o}{r_o} \\ \hat{b} = b_o \end{cases}$ minimize $\bar{V}(\theta)$

$$\bar{V}(\hat{\theta}) = 1 + c_o^2 - \frac{c_o^2}{r_o}$$

which is smaller than the variance for $heta_o$

$$\bar{V}(\hat{\theta_o}) = 1 + c_o^2.$$

Of course, the estimate depends on the input.

Example

$$\delta$$
: $y(t) = b_o u(t-1) + e_o(t)$
$$u(t) = d_o u(t-1) + \omega(t) \quad e_o, \omega \text{ are indep.}$$

Model structure:
$$\hat{y}(t,\theta) = bu(t-2)$$
 , $\theta = b$.

$$E(y(t)-bu(t-2))^{2} = E(b_{o}u(t-1)-bu(t-2))^{2}+Ee_{o}^{2}$$

$$= E((b_{o}d_{o}-b)u(t-2)+b_{o}\omega(t-1))^{2}+1$$

$$= \frac{(b_{o}d_{o}-b)^{2}}{1-d_{o}^{2}}+b_{o}^{2}+1.$$

$$\underset{b}{\operatorname{argmin}} \ \bar{V}(\theta) = b_o d_o$$

equiv.
$$\widehat{b}_N o b_o d_o$$
 as $N o \infty$

$$\bar{V}(\hat{\theta}_N = \hat{b}_N) = 1 + b_o^2$$

$$\Rightarrow$$
 $\hat{y}(t) = b_o d_o u(t-2)$

If u is white, i.e., $d_o = 0$, then

$$\hat{y}(t) = 0$$

Consistency & Convergence

Theorem: Assume that

- a) Z^{∞} is informative enough w.r.to m
- b) $\delta \in m$ (equiv. $D_T \neq \phi$)

Then,

1)
$$D_C \stackrel{\hat{}}{=} \{\theta = \underset{\theta \in D_m}{\operatorname{argmin}} \ \bar{V}(\theta)\} = D_T$$

- 2) If the model structure is globally identifiable at θ_o , then $D_C = D_T = \{\theta_o\}$
- 3) $G\left(e^{i\omega},\widehat{\theta}_{N}\right) o G_{o}\left(e^{i\omega}\right)$, $H\left(e^{i\omega},\widehat{\theta}_{N}\right) o H_{o}\left(e^{i\omega}\right)$ w.p.1 as $N o \infty$

<u>Proof</u>: To gain intuition we will prove the open loop case 1st and then the closed loop.

<u>Case I</u> Open Loop experiment. This implies that u(t) & e(t) are indep.

Recall:
$$\varepsilon(t,\theta) = y - \hat{y}(t,\theta)$$

$$= H^{-1}(q,\theta)[y - G(q,\theta)u]$$

$$= H^{-1}(q,\theta)[G - G(q,\theta)]u + H^{-1}(q,\theta)H(q)$$

$$\bar{E}\left(\varepsilon^{2}(t,\theta)\right) = \int_{-\pi}^{\pi} \left|\frac{1}{H\left(e^{i\omega},\theta\right)}\right|^{2} \left|G\left(e^{i\omega}\right) - G\left(e^{i\omega},\theta\right)\right|^{2} \Phi_{u}(\omega)d\omega$$

$$+ \int \left|1 - H^{-1}\left(e^{i\omega},\theta\right) H\left(e^{i\omega}\right)\right|^{2} \lambda^{2}d\omega + \lambda^{2}$$

$$(H^{-1}(q,\theta)H(q) = e(t) + (1 - H^{-1}(q,\theta)H(q))e)$$

$$\Rightarrow$$
 $\bar{E}\left(\varepsilon^2(t,\theta)\right) \geq \lambda^2$

Equality holds if
$$1 - H^{-1}\left(e^{i\omega}, \theta\right) H\left(e^{i\omega}\right) = 0$$

$$\left|G\left(e^{i\omega}\right) - G\left(e^{i\omega}, \theta\right)\right|^2 \Phi_u(\omega) = 0$$

If
$$u$$
 is p.e. of order $n_b+n_f-1\Rightarrow G\left(e^{i\omega,\theta}\right)=G\left(e^{i\omega}\right)$
$$\Rightarrow \min_{\theta} \ \bar{E}\varepsilon^2(t,\theta)=\lambda^2$$

and all solutions satisfy $\hat{\theta} \in D_T$.

Case II: Closed loop experiment. Then u & e are not independent.

You can write

$$\bar{V}(\theta) - \bar{V}(\theta_o) = E((\varepsilon(t,\theta) - \varepsilon(t,\theta_o))\varepsilon(t,\theta_o)) + \frac{1}{2}E\left((\varepsilon(t,\theta) - \varepsilon(t,\theta_o))^2\right)$$

Notice that

$$\varepsilon(t,\theta) - \varepsilon(t,\theta_o)$$
 is indep of $\varepsilon(t,\theta_o) = e_o$

$$\bar{E}(\varepsilon(t,\theta) - \varepsilon(t,\theta_o))^2 = E(\Delta E)^2 > 0$$

if $\theta \neq \theta_0$ & Z^{∞} is informative.

$$\Rightarrow \theta = \theta_o$$
 is the minimizer(s) $(\hat{\theta} \in D_T)$.

Independently Parametrized Set

$$m: \quad y(t) = G(q,p)u + H(q,\eta)e \quad , \quad \theta = \left| \begin{array}{c} \rho \\ \eta \end{array} \right|$$

$$D_G = \{ \rho | G(q, \rho) = G_o \} \neq \phi$$

No assumptions are made on the noise model

 Z^{∞} is informative (eq. u is p.e.)

$$\widehat{\theta}_N = \left[\begin{array}{c} \widehat{\rho}_N \\ \widehat{q}_N \end{array} \right]$$
 is the estimate.

Thm:
$$\hat{\rho}_N \to D_G$$
.

Proof:
$$\varepsilon(t,\theta) = H^{-1}(q,\eta)[y(t) - G(q,\rho)u]$$

$$= H^{-1}(q,\eta)[(G_o - G(q,\rho))u + H_o e]$$

$$= u_F(t,\eta,\rho) + e_F(t,\eta)$$

$$\bar{V}(\theta) = \bar{E}\left(\varepsilon^2(t,\theta)\right) = \bar{E}u_F^2 + \bar{E}e_F^2 \ge \bar{E}e_F^2$$

$$\min_{\theta} \bar{V}(\theta) = \min_{\theta} \left(\bar{E}_{\theta} - \frac{2}{2} + E_{\theta} - \frac{2}{2}\right)$$

$$\min_{\theta} \bar{V}(\theta) = \min_{e, \eta} \left(\bar{E}u_F^2 + Ee_F^2 \right).$$

$$|G_o - G(q, \rho)|^2 \Phi_u = 0 \quad \Rightarrow \quad G(q, p) = G_o \quad \Rightarrow \quad \rho \in D_G$$

Frequency Domain Interpretation of the Limit

$$\bar{V}(\theta) = \frac{1}{2}\bar{E}\varepsilon^2 = \frac{1}{4\pi}\int_{-\pi}^{\pi} \Phi_{\varepsilon}(\omega,\theta)d\omega$$

$$\varepsilon(t,\theta) = H^{-1}(q,\theta)[(G_o - G)u + v_o] \qquad v_o = H_o e$$

$$\Phi_{\varepsilon}(\omega, \theta) = \frac{\left| G_o - G\left(e^{i\omega}, \theta\right) \right|^2 \Phi_u(\omega) + \Phi_{v_o}}{\left| H\left(e^{i\omega}, \theta\right) \right|^2}$$

$$\bar{V}(\theta) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{\left| G_o - G\left(e^{i\omega}, \theta\right) \right|^2 \Phi_u(\omega) + \Phi_{v_o}}{\left| H\left(e^{i\omega}, \theta\right) \right|^2} dw$$

$$\underline{\text{Case I}} : \text{ Suppose } H\left(e^{i\omega},\theta\right) = H^*\left(e^{i\omega}\right) = \text{ fixed }$$

$$\operatorname{argmin} \ \bar{V}(\theta) = \operatorname{argmin} \ \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{\left| G_o - G\left(e^{i\omega}, \theta\right) \right|^2 \Phi_u(\omega)}{\left| H^*\left(e^{i\omega}, \theta\right) \right|^2} dw$$

Best approx. of G_o , with a weight given by the signal to noise ratio.

Case II: Independently parametrized set

If
$$\theta^* = \begin{bmatrix} \rho^* \\ \eta^* \end{bmatrix}$$
 is a minimizer, then

$$\rho^* = \operatorname{argmin} \int_{-\pi}^{\pi} \frac{\left| G_o - G\left(e^{i\omega}, \rho\right) \right|^2 \Phi_u(\omega)}{\left| H^*\left(e^{i\omega}, \eta^*\right) \right|^2} dw$$

$$\eta^* = \operatorname{argmin} \int_{-\pi}^{\pi} \frac{\Phi_{ER}(\omega, \rho^*)}{\left|H^*\left(e^{i\omega}, \eta\right)\right|^2} dw$$

where $\Phi_{ER}(\omega, \rho^*) = \text{spectrum } y - G(q, \rho^*)u$

$$= \left| G_o \left(e^{i\omega} \right) - G \left(e^{i\omega}, \rho^* \right) \right| \Phi_u + \Phi_v(\omega)$$

(re-write) $= \lambda^* |N(\omega, \rho^*)|^2$ (spectral fact.)

$$\begin{split} \frac{\Phi_{ER}(\omega,\rho^*)}{\left|H^*\left(e^{i\omega},\eta\right)\right|^2} &= \lambda^* \left|1 + \frac{N(\omega,\rho^*) - H\left(e^{i\omega},\eta\right)}{H\left(e^{i\omega},\eta\right)}\right|^2 \\ &= \lambda^* \left[1 + \left|R\left(e^{i\omega},\eta\right)\right|^2 + R\left(e^{i\omega},\eta\right) + \bar{R}\left(e^{i\omega},\eta\right)\right] \\ \text{with } R &= \frac{N(\omega,\rho^*) - H\left(e^{i\omega},\eta\right)}{H\left(e^{i\omega},\eta\right)} \end{split}$$

Lecture 8

Since both N & H are monic, H^{-1} is stable. Then,

$$R = \sum_{k>1} r(k)e^{-i\omega k}$$
 & $r(0) = \int_{-\pi}^{\pi} R(\omega, \eta)dw \equiv 0$

$$\Rightarrow \int \frac{\Phi_{ER}(\omega, \rho^*)}{\left|H\left(e^{i\omega}, \eta\right)\right|^2} = \int \lambda^* \left[1 + \left|R\left(e^{i\omega}, \eta\right)\right|^2\right] dw$$

$$\begin{split} \Rightarrow \eta^* &= \operatorname{argmin} \ \int_{-\pi}^{\pi} \lambda^* \left| R\left(e^{i\omega}, \eta\right) \right|^2 dw \\ &= \operatorname{argmin} \ \int_{-\pi}^{\pi} \lambda^* \left| \frac{1}{N\left(e^{i\omega}, \rho^*\right)} - \frac{1}{H\left(e^{i\omega}, \eta\right)} \right|^2 \Phi_{ER}(\omega, \rho^*) dw \end{split}$$

 η^* is chosen such that $\frac{1}{H(e^{i\omega},\eta)}$ resembles $\frac{1}{N(e^{i\omega},\rho^*)}$; the inverse of the spectral factor of Φ_{ER} .

Equivalently, $H\left(e^{i\omega},\eta\right)$ approximates the spectral factor of the error spectrum in the class of admissible ${\bf H}$'s.