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6.435

SET 8

— Convergence and Consistency

— Informative Data (relation to p.e.)
— Convergence to the true parameters

(role of identifiability)
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Convergence and Consistency

Estimator

ZN — by € D

Question: Given certain properties of ZN and a particular
method for arriving to 9y , what properties does 9y have?

— Does fp — 6% ?

— Does O — “set” ?
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Ergodicity Result

Theorem (LjunQ)

Let {Gy(q),0 € Dy} be a uniformly stable family of filters, wy is a
family of deterministic signals such that

lwp(D| < Cw V0 € Dy
Let the signal sg(t) be defined (for each ¢) as
sp(t) = Gg(q)v(t) + we(?)

where v(t) is a quasi-stationary signal generated by

v(t) = Hy(q)e(t)
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where H; is a uniformly stable family of filters, and e is white with
E (eeT(t)) = A. Then,

N
1 e i
sup ||y > sp(t)sy (t) — Esp(t)sy (0)|| — O
0 € DQ t=1
as N — o© w.p.1
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Assumptions

1. Data is generated in either open loop or close loop:

€o
w u
Syst. >Y
Cont.
y = Hiw + Hoeo w - exogenous input
u = Hzw + Hyeo €o - noise
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w(t) - deterministic, bounded

eo(t) -  white signal, and bounded
moments of order higher than 4.

{ H; are stable transfer functions.

y & u are jointly quasi-stationary

Remark: We view €, as a stochastic signhal & everything else
as deterministic. Hence, E(.) is with respect to €o.
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True system:

§:  y(t) = Golq)u+ Ho(q)u

€o white, bdd 4 moments.

Model structure:

m . {G(q,0),H(q,0)|0 € Dm}

Feasible set:
Dr(&,m) : {9 € Dn|G (ei”, 9> = Go (eiw) :
H (6“",9) = H, (eiw> < w < 77}

Input Choice:
u=—F(q)y +w

Such that F stabilizes Go . Then previous assumption on Data holds.
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Informative Data

e Informativity is a notion that will allow us to distinguish between
different models in a structure.

‘ZN:(u(t) O t§N—1)
7%= (ul) , y(t) ; ¥V t)

e Def: A quasi-stationary data set Z° is informative enough with
respect to a model set m” if for any W1, Ws € m™,

E((W1(9)-W2())Z(1)? = 0= W (%) = W2 ()  aee.
- Detail  (Wi(q) — W2a(q))Z(t) = AWu(g)u + AWy(q)y

e Def: Z°° is informative if it is informative enough with respect to
all LTI models.
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. T
e Thm: Z*° is informative if the spectrum of z = [ u Y } IS

strictly positive definite V w

e Proof: Let W = Wy — Wo

- E(W(q)2)?°=0 <« /_7; W (eiw> b, (W)W (e_iw> do =0
il il
Wi(g) =0 & 4% (eiw> D, (W)W (e_i”) =0 a.e.

= P(w)>0 a.e.

e What is the relation between informativity of data & persistence of
excitation of an input? Recall, it is the input that you can choose!
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Informativity vs.
Persistence of Excitation

Thm: Letm = {G(q,0),H(q,0)|0 € D} and assume that

5(q)
F(q)
where B, F are polynomials of order 71, s respectively.
If u is p.e. of order n, + ns, then the data record [u, y] is

G(q,0) =

informative with respect to m.

= Proof: We claim that data is informative if for any

AG =G, —Go,G; €m,

‘AG (eW)| o (eW) — 0 AG=0
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If this holds, then u is p.e. of order ny + n g, Py(w) > 0 for
at least ny + n ¢ frequencies.

e Proof of Claim:

Wiz—Woz = g1—7y2 = (y—92)—(y—y1) = e2—¢€1
e1 = H{ Yy — Giu)
o H2_1(y — Ghou) where G;, H; e€m
also note that

g = Hg_l(Gou — Gou+ Hoe); Go,Ho are the true models.
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Ae = €0 — g1

= H2—1<y — Gou) — Hy ' (y — Gyu)

_ H-q Hq
= H1|Giu— Ly —1G
1 1U y+H2y 1, 2
_ (H1 — H») (H1 — H»)
—H1|(Ggi -G — G
1 ( 1 2)U+ i, Yy H, oU
= H; Y[AGu + AHe))]
2
_ _ /1 AH AH
E(A)2 =E AGu+—"(G, -G —— &
(Ag) (Hll u—+ HQ( o— Go)u+ 7 oeD
2
—/77|H1|2 AG+—(GO G2)| Pu(w)dw

IAH|? 2.2
+/ |Ho|?222dw = 0
© |Hy|2|Ho|2"°
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= Both integrals = 0

|AH?

=
|H1|?|H>|?

|Ho|?A? =0 But Hy, # 0

= |AH|?=0 = H;=H, a.e.

(Comment: Richness of noise guarantees H1 = H)5).

1
= " IAGPD, (w) =0 a.e.
H12| <Py (w)

[ Hy = Hp ()
ie. E(Ae)°=0 &

| [AG]PPy(w) =0

Informativity < Persistence of excitation w.r. to G.
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Assumptions

Def: m is uniformly stable if the family of filters

d
{W(q, 0),W(q,0), @\U(q, 9)} is uniformly stable.

More assumptions:

1) Model structure is uniformly stable.

I
2) Vi(6) Z The Hessian is non-singular, at least locally

around min V(0).
6

3) Data is informative.
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Analysis of Prediction
Error Methods

O = argmin Vy (9, ZN)
9 € D

Quadratic objective V) (0, ZN) =

‘5(75, 0) =y(t) —W,=(1- Wy)y + (—Wu)u

It follows that:

e(t,0) = Hs(q,0)w + Hg(q,0)eo, Hs, Hg are uniformly stable.

This is a result of uniform stability of W, and the fact that y, u
are generated by W & €o through stable filters.
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Lemma: Let the assumptions on
- Data generation

- Uniform stability of model structure

hold. Then,
N

% N e2(t,0) — Ee?(t,0)

t=1

sup

— 0 as N — oo w.p.1l

Proof: follows immediately from the basic ergodicity theorem.
Let
7(0) = Eész(t, 0)
Do = argmin V(0) = {9‘\0‘ € D,V (9) = min V(@)}
v c Dy 0
(all possible solutions).
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Thm: Under the assumptions of the lemma,

Oy — Do w.p.l as N — oo

(inf |§N—9|—>O w.p.1 asN—>oo)
9 c De

Proof: From previous lemma, V) (0, ZN) converges to V' (0)

uniformly on Dy, . The result follows immediately from this.
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Example

d: ytaoy(t—1) = bou(t—1)4eo(t)coeo(t—1) u,e, are white.

Model structure m: 4§ = —ay(t—1) 4+ bu(t—1)
a
= (3)

Previously, we have computed all the expectations for
_ 1 X

O = argmin G >y — g(t)|2 (Least Squares)
t=1
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V(0) = Ee2(t,0) = E(y(t)+ay(t—1)—bu(t—1))?
= ro(1 + al — 2aao0) + b2 — 2bb, + 2ac,

& r,= Ey2 _ b02 + CO(CO — a0>2— aoCo + 1
1—ao

The values { g To minimize V(0)

_ C
V() =14 c® — =
To
which is smaller than the variance for 6,
V(0,) = 1+ co°.

Of course, the estimate depends on the input.
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Example

0. y(t) =bou(t —1) 4 eo(t)

u(t) =dou(t —1) +w(t) eo,w are indep.
Model structure: 4(¢,0) =bu(t—2) , 6 =0b.
E(y(t)—bu(t—2))2 = E(bou(t—1)—bu(t—2))°+ Eey?

= E((bodo — b)u(t — 2) + bow(t — 1))° + 1
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argmin V(0) = bod,
b

equiv. by — body as N — oo
V(Oy =by) =14 b2
=  g(t) = bodou(t — 2)

If u is white, i.e., dp, = O, then

y(t) =0
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Consistency & Convergence

Theorem: Assume that

a) 7°© is informative enough w.r.to m
b) 6 em (equiv. Dp # ¢)
Then,

1) Dp = {6 = argmin V(0)} = Dr
0 € Dy,
2) If the model structure is globally identifiable at 0o , then
Do = Dy = {00}
3) G (ew, §N> — Go (eiw> , H (eiw, 9AN> — H, (eiw>
w.p.l1 as N —
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Proof: To gain intuition we will prove the open loop case 1st and
then the closed loop.

Case | Open Loop experiment. This implies that u(t) & e(t)
are indep.

Recall: «(t,0) =y — y(t,0)
= 1 1(q,0)[y — G(q,0)]
= H Y(q,0)[G — G(¢,0)]u+ H (q,0)H(q)

2
B (2(t,0)) = /7; 1

H (eiw : 9)

3 |G (ew) — G (ew, 9) ‘2 Dy (w)dw

+/\1 _ g1 (ew,e) i (eW)f/\de + )2

Lecture 8 6.435, System ldentification 23
Prof. Munther A. Dahleh



(H1(q,0)H(q) = e(t) + (1 — H '(q,0)H(q)) )
= E (52(15, 9)) > A2
Equality holds if 1 — H 1 (eiw, 9) H (ew> =0
& |a(e®) —a(e,6)|° Pulw) =0
If wis p.e. of order my +ny—1= G (e?) =G ()
= min E?(t,0) = \?

and all solutions satisfy § ¢ D.
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Case ll: Closed loop experiment. Then u & e are not independent.

You can write

‘7(9) — ‘7(90) = E((e(t,0) —(t,00))e(t,00))+

B ((=(1,0) — (t,6))°)

Notice that
e(t,0) —e(t,0,) isindep of e(t,0,) = eo
E(e(t,0) —e(t,0,)2 = E(AE)?2 >0
if 00, & Z°° isinformative.

= 0 = 0o is the minimizer(s) (4 € D).
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Independently Parametrized Set

m:  y(t) =G(gp)u+ H(g,n)e 9=[7’;]

Dg = {p|G(q,p) = Go} # ¢
No assumptions are made on the noise model

Z°° is informative (eq. u is p.e.)

éN = [ 'EN ] IS the estimate.
aN

0 € Dy,
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Thm: py — Dg.

Proof: (t,0) = H ' (q,n)[y(t) — G(q, p)u]
= H ' (q,)[(Go — G(g, p))u + Hoe]
= up(t,n,p) +ep(t,n)

V(0) = E (*(t,0)) = Bup® + Bep® > Bep?

m@in V) = rginn (Eup® + Eep?) .

Go—G(g,p)[?Pu=0 = G(g,p)=Go = p€Dg
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Frequency Domain
Interpretation of the Limit

_ 1 _ 1 7
wJ—T

e(t,0) = H 1(q,0)[(Go— G)u~+vo) vo = Hoe

Go— G (e, 0) \2 Pu(w) + Do,

P (w,0) =
- (e
- 2
7(6) =%/_7; GO—G(ezw,9)| q>u2<w>+q>vodw
H (e, 6)
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Case |I: Suppose H (eiw,H) = H* (ei‘”) = fixed

argmin V() = argmin

1 7 [Go—G (eiw,e)f@u(w)d
E/;W IH* (eiw79)‘2 v

Best approx. of Gy, with a weight given by the signal to noise ratio.

Case Il: Independently parametrized set

>k
If 9* = [ p* ] IS a minimizer, then
N

- 2
i _ 7r ‘Go — G (e’“", p) by (w)
p- = argmin / _ 5 dw
—T |H* (ezw’ 77*)
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(DER(‘Wa P*)2 .
i (6v.n)

where ®pp(w, p*) = spectrum y — G(q, p*)u

Y
n* = argmin /
—7T

= |Go (eiw) — G (eiw, p*) by + Py(w)
(re-write) = \*|N(w, ,0*)|2 (spectral fact.)
Per(w,p") _ y+|i 4 N(w, p*) — H (€, n) °
. 5 = :
H* <€zw7 77) | H <ezw7 ?7)

= \* _1 + ‘R (eiw, n)‘Q + R (eiw,n) + R (eiw,n)]
N(wa p*) —H <€iw7 77)
H <€iw’n>
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Since both N & H are monic, [J 1 is stable. Then,
. 7T
R=)_ r(k)e™™k & r(0) :/ R(w,n)dw =0
— 77T

k>1
/ Ppr(w, ,0 ) /Xk [1 n ‘R(ew’@‘?] s
‘H i, )]
= n* = argmin / A\ R(eiw,n)‘zdw
2
= argmin /_7T 2\* 5 (ei’,p*) - (e@l'w,n) P pr(w, p*)dw
1 1

n™ is chosen such that H(ew,n) resembles N(ew p*) ; the

inverse of the spectral factor of & p.

Equivalently, H (ew, 77) approximates the spectral factor of the
error spectrum in the class of admissible H’s.
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