System Identification

6.435

SET 6

- Parametrized model structures
- One-step predictor
- Identifiability

Munther A. Dahleh

Models of LTI Systems

A complete model

$$y = Gu + He$$

$$u = \text{input}$$

$$y = \text{output}$$

$$e = \text{noise} \qquad \text{(with } f_e(\cdot) \text{ PDF)}.$$

$$G = \sum_{k=1}^{\infty} g(k)q^{-k}$$
 $H = 1 + \sum_{k=1}^{\infty} h(k)q^{-k}$

A parametrized model

$$y=G(heta,q)u+H(heta,q)e$$

$$u= ext{input}$$

$$y= ext{output}$$

$$e= ext{noise} \qquad (ext{with } f_e(\cdot, heta) ext{ PDF of } e).$$

$$e ext{ white noise}$$

$$heta\in D\subset\Re^d$$

One Step Linear Predictor

- e is WN, $Var(e) = \lambda^2(\theta)I$
- Want to find $\hat{y}(\cdot|\theta)$ that minimizes $E(y-\hat{y})^T(y-\hat{y})$
- $\hat{y}(t,\theta) := H^{-1}(q,\theta)G(q,\theta)u(t) + (1 H^{-1}(q,\theta))y(t)$
- Minimum Prediction Error Paradigm

Data:
$$[u(t), y(t)|t \leq N]$$

$$\hat{\theta}_N = \text{Estimate of } \theta \text{ at time } N$$

$$= \operatorname{argmin} \frac{1}{N} \sum_{t=1}^{N} ||\varepsilon(t|\theta)||_{2}^{2}$$

$$\varepsilon(t|\theta) = y - \hat{y}(t|\theta) = H^{-1}(q,\theta) [y - G(q,\theta)u]$$

One Step Linear Predictor (Derivation)

The predicted output has the form

$$\hat{y}(\cdot,\theta) = L_1(q,\theta)y + L_2(q,\theta)u$$

Both L_1 & L_2 have a delay. Past inputs and outputs are mapped to give the new predicted output.

$$y - \hat{y} = Gu + He - L_2u - L_1y$$

Notice that:

$$y = Gu + He$$

$$\Leftrightarrow H^{-1}y = H^{-1}Gu + e$$

$$\Leftrightarrow y = (I - H^{-1})y + H^{-1}Gu + e$$

Now:

$$y - \hat{y} = \underbrace{\left(I - H^{-1} - L_1\right)} y + \underbrace{\left(H^{-1}G - L_2\right)} u + e$$
has at least one delay one delay
$$= z + e$$

$$E\left(y - \hat{y}\right)^T \left(y - \hat{y}\right) = E\left(Z^TZ\right) + E\left(e^Te\right)$$

$$> \lambda^2(\theta)I$$

The lower bound is achieved if z = 0

Equivalently

$$L_1 = I - H^{-1}$$

 $L_2 = H^{-1}G$

Result

$$\widehat{y}(\cdot|\theta) = \left(I - H^{-1}\right)y + H^{-1}Gu$$

$$\varepsilon(\cdot|\theta) = y - \widehat{y} = H^{-1}(q,\theta)[y - G(q,\theta)u]$$

$$= e$$

Examples of Transfer Function Models

- –ARX (Autoregressive with exogenous input)
- Description

$$y(t) + a_1 y(t - 1) + \dots + a_{na} y(t - n_a)$$

$$= b_1 u(t - 1) + \dots + b_{nb} u(t - n_b) + e(t)$$

$$\theta = [a_1 \dots a_{na} \quad b_1 \dots b_{nb}] \quad , \quad e \text{ is } WN$$

$$A(q) = 1 + a_1 q^{-1} + \dots + a_{na} q^{-n_a}$$

$$B(q) = b_1 q^{-1} + \dots + b_{nb} q^{-n_b}$$

• Matched with the model y = Gu + He

$$G = \frac{B}{A}$$
 $H = \frac{1}{A}$

$$H = \frac{1}{A}$$

Examples ... ARX

One step predictor

$$\widehat{y}(t|\theta) = Bu + (1 - A)y$$

Linear Regression

$$\phi(t) = [-y(t-1)\dots -y(t-n_a) \quad u(t-1)\dots u(t-n_b)]^T$$
(a function of past data)

Prediction error

$$\varepsilon(t|\theta) = y(t) - \hat{y}(t|\theta)$$
$$= y(t) - \phi^{T}(t)\theta$$

Examples ARMAX

- ARMAX (Autoregressive moving average with exogenous input)
- Description

$$Ay(t) = Bu(t) + Ce(t)$$

$$A(q) = 1 + a_1q^{-1} + \dots + a_{na}q^{-n_a}$$

$$B(q) = b_1q^{-1} + \dots + b_{nb}q^{-n_b}$$

$$C(q) = 1 + c_1q^{-1} + \dots + c_{nc}q^{-n_c}$$

$$e: WN \qquad \theta = (a_1 \dots a_{na} \quad b_1 \dots b_{nb} \quad c_1 \dots c_{nc})$$

- Standard model $G(q) = \frac{B}{A}$ $H(q) = \frac{C}{A}$
- More general, includes ARX model structure.

Examples ARMAX

One step predictor

or
$$\widehat{y}(t|\theta) = \frac{B}{C}u + (1 - \frac{A}{C})y$$
 or
$$\widehat{y}(t|\theta) = Bu + (C - A)y + (1 - C)\widehat{y}$$

• Pseudo-linear Regression

$$\Phi(t,\theta) = [-y(t-1)\dots -y(t-n_a) \quad u(t-1)\dots u(t-n_b) \quad \varepsilon(t-1|\theta)\dots \\ \dots \varepsilon(t-n_c|\theta)]^T$$

past predictions

where

$$\varepsilon(t|\theta) = y - \hat{y}(t|\theta) = (1 - c)\varepsilon(t|\theta) + Bu + (1 - A)y$$

or simply

$$\hat{y}(t|\theta) = \Phi^T(t,\theta)\theta$$
 Not linear in θ

Examples OE

- OE (Output Error)
- Description

$$y(t) = \frac{B}{F}u + e$$

$$F(q) = 1 + f_1q^{-1} + \dots + f_{nf}q^{-nf}$$

$$B(q) = b_1q^{-1} + \dots + b_{nb}q^{-nb}$$

$$\theta = (b_1 \dots b_{nb} \quad f_1 \dots f_{nf})$$

- One step predictor $\hat{y}(t|\theta) = \frac{B}{F}u$
- Standard $G = \frac{B}{F}$ H = 1

Examples OE

Nonlinear Regression Vector

$$\hat{y} = \frac{B}{F}u \quad \Rightarrow \quad F\hat{y} = BU$$

$$\Rightarrow \hat{y}(t|\theta) = Bu + (1 - F)\hat{y}$$

Define

$$\Phi(t,\theta) = (u(t-1)\dots u(t-n_b) - w(t-1|\theta)\dots - w(t-n_f|\theta))$$

$$\omega(t|\theta) = \frac{B}{F}u \qquad (=\hat{y}(t|\theta))$$

$$\widehat{y} = \Phi^T(t, \theta)\theta.$$

Examples Box-Jenkins

$$y = \frac{B}{F}u + \frac{C}{D}e$$

$$\hat{y} = \frac{BD}{FC}u + \frac{C-D}{C}y$$

An even more general model

$$Ay = \frac{B}{F}u + \frac{C}{D}e \qquad \dots$$

Examples State-Space

- -State-Space Models
- Description

$$x(t+1) = A(\theta)x(t) + B(\theta)u(t) + \omega(t)$$
$$y(t) = C(\theta)x(t) + \nu(t)$$

$$A(\theta) \in \Re^{n \times n}$$
 $B(\theta) \in \Re^{n \times m}$ $C(\theta) \in \Re^{p \times n}$

• Noise: two components $\begin{cases} \text{disturbance} & \omega(t) \\ \text{Output noise} & \nu(t) \end{cases}$

Usual assumptions

$$E\omega\omega^T=R_1(\theta)$$
 $Evv^T(t)=R_2(\theta)$ $Ewv^T(t)=R_{12}(\theta)$ $\boldsymbol{w},\,\,\boldsymbol{v}$ are white.

• One Step Predictor = Kalman Filter

$$\hat{x}(t+1|\theta) = A(\theta)\hat{x}(t|\theta) + B(\theta)u + K(\theta) \left[y - C(\theta)\hat{x}(t|\theta) \right]$$

$$\hat{y}(t|\theta) = C(\theta)\hat{x}(t|\theta)$$

$$K(\theta) = \left[A(\theta)\bar{P}(\theta)C^{T}(\theta) + R_{12}(\theta) \right] \cdot \left[C(\theta)\bar{P}(\theta)C^{T}(\theta) + R_{2}(\theta) \right]^{-1}$$

 $\bar{P}(\theta)$ is a positive semi-definite solution of the steady-state Riccati equation:

$$\bar{P}(\theta) = A(\theta)\bar{P}(\theta)A^{T}(\theta) + R_{1}(\theta) - \left(A(\theta)\bar{P}(\theta)C^{T}(\theta) + R_{12}(\theta)\right)\left[C(\theta)\bar{P}(\theta)C^{T}(\theta) + R_{2}(\theta)\right]^{-1} \cdot \left(A(\theta)\bar{P}(\theta)C^{T}(\theta) + R_{12}(\theta)\right)^{T}$$

$$\bar{P}(\theta) = E(x-\hat{x})(x-\hat{x})^{T} \quad \text{(error covariance)}$$

Innovation Representation

$$\hat{x}(t+1|\theta) = A(\theta)\hat{x}(t|\theta) + B(\theta)u + K(\theta)e$$
$$y(t) = C(\theta)\hat{x}(t|\theta) + e$$
$$E(ee^T) = C(\theta)\bar{P}(\theta)C^T(\theta) + R_2(\theta)$$

In general

$$\widehat{y}(t,\theta) = C(\theta) (qI - A(\theta) + K(\theta)C(\theta))^{-1} B(\theta)u +$$

$$C(\theta) (qI - A(\theta) + K(\theta)C(\theta))^{-1} K(\theta)y$$

General Notation

Define

$$T(q) = \begin{bmatrix} G(q) & H(q) \end{bmatrix}, \quad X(t) = \begin{bmatrix} u(t) \\ e(t) \end{bmatrix}$$

It follows

$$y(t) = T(q)X(t)$$
; Describes the model structure

Predictor:

$$\widehat{y}(t) = W(q)Z(t) \qquad Z(t) = \begin{bmatrix} u(t) \\ y(t) \end{bmatrix}$$
$$= \begin{bmatrix} W_u(q) & W_y(q) \end{bmatrix} Z(t)$$

For a given T(q),

$$W(q,\theta) = \left[H^{-1}(q,\theta)G(q,\theta) \quad I - H^{-1}(q,\theta) \right]$$

- Notice: $W(q,\theta)$ can be stable even though $T(q,\theta)$ is not!
- $T(q,\theta) \simeq W(q,\theta)$

Predictor Models

<u>Def</u>: A predictor model is a linear time-invariant stable filter W(q) that defines a predictor

$$\widehat{y}(t) = W(q) \begin{bmatrix} u \\ y \end{bmatrix}.$$

<u>Def</u>: A complete probabilistic model of a linear time-invariant system is a pair $(W(q), f_e(x))$ of a predictor model W(q) and the PDF f_e associated with the prediction error (noise).

In most situations, $f_e(x)$ is not complete known. We may work with means & variances.

Stability Requirements

Example ARX

$$A(q)y = B(q)u + e$$

$$\Leftrightarrow \quad y = \frac{B}{A}u + \frac{1}{A}e$$

If A(q) has zeros outside the disc, then the map from $u \to y$ is unstable.

$$\hat{y}(t) = (I - A)y + Bu = W(q)Z$$

is always stable.

Model Sets

Def: A model set is a collection of models

$$m^* = \{W_{\alpha}(q) | \alpha \in \varphi\}$$
 φ : Index set

Examples

 $m^* = \text{all linear models}$

 $m^* = \text{all models where } W(q) \text{ is FIR of fixed order}$

 $m^* =$ a finite set of models

 $m^* =$ nonlinear fading memory models

Comment: These are "big" sets that are not necessarily parametrized in a nice way.

Model Structures

Model structures are parametrizations of model sets. We require this parametrization to be smooth.

Let a model be index by a parameter $\theta, W(q, \theta)$. We require $W(q, \theta)$ to be differentiable with respect to θ , for $|q| \ge 1$.

$$\Psi(q,\theta) = \frac{d}{d\theta} W(q,\theta)$$

$$= \begin{bmatrix} \frac{d}{d\theta} W_u(q,\theta) & \frac{d}{d\theta} W_y(q,\theta) \end{bmatrix}$$

$$\stackrel{\triangle}{=} \begin{bmatrix} \Psi_u(q,\theta) & \Psi_y(q,\theta) \end{bmatrix}$$

Notice that

$$\frac{d}{d\theta}\hat{y}(t,\theta) = \frac{d}{d\theta} \left[W(q,\theta)Z \right]$$
$$= \Psi(q,\theta)Z$$

<u>Def</u>: A model structure m is a differentiable map from a connected open subset $D_m \subseteq \Re^c$ to a model set m^* such that $\Psi(q,\theta)$ the gradient, is defined and stable.

$$m: D_m \longrightarrow m^*$$

$$\theta \longrightarrow m(\theta) = W(q, \theta) \in m^*$$

m: is the map

 $m(\theta)$: is one particular model

Example: ARX model structure

$$y(t) + ay(t - 1) = b_1 u(t - 1) + b_2 u(t - 2) + e(t)$$

$$W(q, \theta) = \begin{pmatrix} b_1 q^{-1} + b_2 q^{-2}, -aq^{-1} \end{pmatrix}$$

$$\theta = \begin{pmatrix} a & b_1 & b_2 \end{pmatrix}^T$$

$$\Psi(q, \theta) = \begin{bmatrix} 0 & -q^{-1} \\ -q^{-1} & 0 \\ -q^{-2} & 0 \end{bmatrix}$$
 stable

General Structure

$$y(t) = G(q, \theta)u + H(q, \theta)e$$

$$\Psi(q,\theta) = \begin{bmatrix} H^{-1}G & 1 - H^{-1} \end{bmatrix}$$

$$\frac{d}{d\theta}W_u(q,\theta) = \frac{d}{d\theta}H^{-1}G = -\frac{1}{H^2}H' + \frac{G'}{H}$$

$$=\frac{1}{H^2}\left(G'H-H'G\right)$$

$$\frac{d}{d\theta}W_y(q,\theta) = \frac{d}{d\theta} \left(1 - H^{-1} \right) = -\frac{1}{H^2} H'$$

$$\Psi(q,\theta) = \frac{1}{H^2} \left[\frac{d}{d\theta} G \frac{d}{d\theta} H \right] \begin{bmatrix} H & 0 \\ -G & 1 \end{bmatrix}$$

You need

G, H to be differentiable

 H^{-1} is stable

(not sufficient).

Model Structures

Proposition: The parametrization

$$\hat{y}(t,\theta) = \frac{DB}{CF}u + \left(1 - \frac{DA}{C}\right)y$$

for heta (= set of parameters of $m{A}$, $m{B}$, $m{C}$, $m{D}$, $m{F}$)

restricted to the set

 $D_m = \{\theta | F(q)C(q) \text{ has no zeros outside the unit disc} \}$

is a model structure

 \underline{Proof} : Follows from the previous general derivative. Notice that $m{H}$ may be unstable!

Proposition: The Kalman Filter parametrization is a model structure if

$$\theta \in \{\theta | A(\theta) - K(\theta)C(\theta) \text{ is stable}\} \stackrel{\hat{}}{=} D_{\mu}$$

(The stability property is equivalent to $(A(\theta), C(\theta))$ being detectable).

Independent Parametrization

A model structure m is independently parametrized if

$$\theta = \begin{bmatrix} \rho \\ \eta \end{bmatrix}, D_m = D_{\rho} \times D_{\eta}, \text{ and}$$

$$T(q,\theta) = \begin{bmatrix} W_u(q,\rho) & W_y(q,\eta) \end{bmatrix} \quad \rho \in D_\rho, \quad \eta \in D_\eta$$

Useful for giving a frequency domain interpretation of the estimate.

• We can define a model set as the range of a model structure:

$$R(m) = \{m(\theta), \theta \in D_m\}$$

We can define unions of different model structures:

$$m^* = \square \cup R(m_k)$$

Useful for model structure determination!

Identifiability

Central question I: Does the identification procedure yield a unique parameter θ ?

<u>Def</u>: Model structure is identifiable (globally!) at θ^* if $m(\theta) = m(\theta^*), \theta \in D_m \Rightarrow \theta = \theta^*$. It is locally identifiable at θ^* if there exists an $\varepsilon > 0$ such that $m(\theta) = m(\theta^*), \theta \in B(\theta^*, \varepsilon)$ implies $\theta = \theta^*$.

<u>Def</u>: Model structure is strictly identifiable (local or global) if it is identifiable (local or global) for all $\theta^* \in D_m$.

<u>Central question II</u>: Is the identified parameter equal to the "true parameters" ?

Parametrized structure:
$$y(t) = G(q, \theta)u + H(q, \theta)e = m$$

true system
$$\zeta$$
: $y(t) = G_o u + H_o e$

Case I: $\zeta \not\in m$

Case II: $\zeta = m(\theta)$ for some θ .

Define:

$$D_T(\zeta, m) = \{ \theta \in D_m | G_o = G(q, \theta), H_o = H(q, \theta)$$
 almost everywhere (q)

Let $\zeta = m(\theta_o)$ for some θ_o . If $m(\theta)$ is identifiable at θ_o , then $D_T(\zeta, m) = \{\theta_o\}$.

Identifiability of Model Structures

General:
$$T(q,\theta) = \begin{bmatrix} G(q,\theta) & H(q,\theta) \end{bmatrix}$$

Identifiable
$$G(q,\theta) = G(q,\theta_o)$$
 $\Rightarrow \theta = \theta_o$

$$\underline{ARX}: \quad G = \frac{B}{A} \qquad \quad H = \frac{1}{A}$$

If
$$G(q,\theta) = G(q,\theta_o)$$
 & $H(q,\theta) = H(q,\theta_o)$

$$\Rightarrow A(q,\theta) = A(q,\theta_o) \& B(q,\theta) = B(q,\theta_o)$$

$$\Rightarrow \theta = \theta_0$$

ARX is strictly identifiable

$$\underline{\text{OE}}: \quad y = \frac{B}{F}u + v$$

Suppose
$$\frac{B}{F} = \frac{\tilde{B}}{\tilde{F}}$$
 . Then

$$B = \tilde{B} \& F = \tilde{F} \text{ iff } (B, F) \text{ are coprime.}$$

(To do this cleanly, need to consider $q^{n_B}B, q^{n_F}F$ where n_B & n_F are the delay powers in both $\bf B$ & $\bf F$)

Identifiability

Theorem:

$$Ay = \frac{B}{F}u + \frac{C}{D}e$$
 is identifiable at $\theta = \theta^*$ iff $(C^*(q) = C(q, \theta^*)...)$

- 1) There are no common factors of $q^{n_a}A^*, q^{n_b}B^*, q^{n_c}C^*$
- $q^{n_b}B^*, q^{n_f}F^*$
- $q^{n_c}C^*, q^{n_d}D^*$