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Diagonalization of Symmetric Matrices 

1. Review: eigenvalues, eigenvectors, and diagonalization 

2. Proof: symmetric matrices have real eigenvalues 

3. Proof: symmetric matrices have a complete orthogonal set of eigenvectors 

•	 Simple proof for distinct eigenvalues 

•	 Brief introduction to Householder reflections 

•	 Induction proof valid for repeated eigenvalues 

•	 Intuition: eigenvalues and eigenvectors are continuous functions of matrix entries 

Symmetric Positive Definite and Semidefinite Matrices 

1. Geometry of quadratic forms 

•	 Conditions on eigenvalues for positive (semi)definite matrices 

•	 Example: finding equiprobable contours for the two dimensional Gaussian distri­
bution with inverse covariance 
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2. Matrix square roots 

•	 Definition and construction from diagonalization 

•	 Nonuniqueness and the unique symmetric, positive semidefinite square root 

3. Applications of square roots 

•	 Simulation (shaping) 

•	 Decorrelation (whitening) 

4. Principal components analysis (PCA) 

•	 Definition and relation to eigendecomposition 

•	 Direct calculation from empirical data via the singular value decomposition (SVD) 


