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Problem 2.1 
Let x and y be statistically independent random variables with probability density 
functions 

1 1 
px (x) = λ(x + 1) + λ(x − 1)

2 2 
and 

⎤ 
1 y2 ⎥ 

py (y) = exp ,�
2�δ2 

− 
2δ2 

and let z = x + y , and w = xy . 

(a) Find pz (z), the probability density function for z . 

(b) Find the conditional probability density functions pz |x (z x = −1) and pz |x (z x =| |
1). 

(c) Find the mean values x̄ = mx and ȳ = my , the variances δy 
2 and δ2 , and the w 

covariance �yw . Are y and w uncorrelated random variables? Are y and w 
statistically independent random variables? 

(d) Are y and w Gaussian random variables? Are they jointly Gaussian? Explain. 

Problem 2.2 
Let x1 and x2 be zero-mean jointly Gaussian random variables with covariance matrix 

⎦ � 
34 12 

�x = . 
12 41 

(a) Verify that �x is a valid covariance matrix. 

(b) Find the marginal probability density for x1. Find the probability density for 
y = 2x1 + x2. 
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(c) Find a linear transformation defining two new variables 
⎦ � ⎦ � 

x 
x 

� 
1 
� 
2 

= P

x1 

x2 

so that x � 1 and x
� 2 are statistically independent and so that 

PPT = I, 

where I is the 2 × 2 identity matrix. 

Problem 2.3 (practice) 
Let x be an N -dimensional zero-mean random vector whose covariance matrix has 
eigenvalues 

�1 > �2 > > �N ,· · · 
and corresponding eigenvectors 

, πN .π1, π2, · · · 

Suppose we wish to approximate x as a scalar random variable b times a deterministic 
N -dimensional vector a ( i.e., ba ). This problem concerns finding the “best” b and 
a. 

(a) Let

bopt = arg min x − ba≤,


b�R 
≤

where ≤ · ≤ is the Euclidean norm for RN , i.e., ≤ 2 = z T 
z. Find an explicit z≤

expression for bopt in terms of x and a. Note that bopt is a random variable. 

(b) Let bopt be as defined in part (a). Now define 

aopt = arg min E[ x − bopta≤ 2]. 
a�RN 

≤

Show that

var [aT 

x]

aopt = arg max . 

aT aa 

(c) Determine

var [aT 

x]

max 

T 
a a a


and indicate the value(s) of a for which the maximum is achieved.
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(d) Repeat part (c) when we impose the constraint that


a � πi (i.e., aT πi = 0) for i = 1, 2, · · · , k − 1,


for some k √ 2. Again, indicate the value(s) of a for which the maximum is 
achieved. 

Problem 2.4 
x and y 

x 

y 

p (x ,y ) 

1 2 

1 

2 

Suppose are random variables. Their joint density, depicted below, is con­
stant in the shaded area and 0 elsewhere. 

x,y

-1 -2 

-1 

-2 

(a) Let	 H = H0 when x ∼ 0, and let H = H1 when x > 0. Determine P0 = 
Pr [H = H0] and P1 = Pr [H = H1], and make fully labelled sketches of py |H (y H0)|
and py |H (y H1).|

ˆ(b) Construct a rule	 H(y) for deciding between H0 and H1 given an observation 
y = y that minimizes the probability of error. Specify for which values of y 
your rule chooses H1, and for which values it chooses H0. That is, determine 
the regions 

ˆ= {y H(y) = H0}Z0 | 
ˆ= {y H(y) = H1}.Z1 | 

What is the resulting probability of error? 
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Problem 2.5 
In the binary communication system shown in Fig. 5-1, messages m = 0 and m = 1 
occur with a priori probabilities 1/4 and 3/4 respectively. Suppose that we observe 
r , 

r = n + m, 

where n is a continuous valued random variable with the pdf shown in Fig. 5-2. The 
random variable n is statistically independent of whether message m = 0 or m = 1 
occurs. 

m=0 or 1 
source +m 

receiver 
received ^ m=0 or 1 

r
m̂ 

message signal 
n 

Figure 5-1 

pn (n) 

2/3 

n 
-3/4	 3/4 

Figure 5-2 

(a) Find the minimum probability of error detector, and compute the associated 
ˆprobability of error, Pr [m = m].∗

(b)	 (practice) Suppose that the receiver does not know the a priori probabilities, 
so it decides to use a maximum likelihood (ML) detector. Find the ML detector 
and the associated probability of error. Is the ML detector unique? Justify your 
answer. If your answer is no, find a different ML receiver and the associated 
probability of error. 

Problem 2.6 
Consider the binary discrete-time communication system shown in Fig. 6-1. Assume 
that m = 0 and m = 1 are equally likely to occur. Under hypothesis Hm (m = 0, 1), 
the received signal r [n] is given by 

r [n] = ym[n] + w [n] = sm[n] ⊥ h[n] + w [n], for all n, 

where “ ” denotes convolution, and where the w [n]’s are zero-mean statistically in-⊥
dependent Gaussian random variables with variance δ2 . The two signals, s0[n] and 
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s1[n] are shown in Figs. 6-2 and 6-3, respectively. The parameter � in Fig. 6-3 satisfies 
0 ∼ � ∼ 1. The impulse response of the linear time invariant filter h[n] is shown in 
Fig. 6-4. 

h[n] r[n]+s [n]m 

m = 0 or 1 

y [n]m 

w[n] 
Figure 6-1 

s 
2 

1
⎯⎯⎯
√√

[n]0 
n 

0 1

⎯ 
2 

1
⎯⎯ 

Figure 6-2 

s [n]1 
n 

0 

1 

√ 
⎯⎯λ 

2 

⎯⎯ 

⎯⎯ 
⎯⎯ 

2 

λ 

√ 

− 

Figure 6-3


1 
⎯
2 

⎯
2 

1
⎯⎯ ⎯⎯ 

√√
h[n] 

n 
0 1 

Figure 6-4 
We wish to obtain a rule for making a decision about which hypothesis was used, 

based on the observed sequence r [n]. 

(a) Which samples of r [n] provide information in making the decision? Justify your 
reasoning. 

(b) Find the minimum probability of error decision rule, based on observation of 
r [n]. Simplify your processor as much as possible to minimize computation. 
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(c) Obtain an expression for Pr [α] in terms of � and Q (·), where Q (·) is defined as 

Q (x) = 
1 

� � 

e −�2/2d�. �
2� x 

(d) Find the values of	� (where 0 ∼ � ∼ 1) that minimize Pr [α] for the detector 
obtained in part (b). 

Problem 2.7 (practice) 
Binary frequency shift keying (FSK) on a Rayleigh fading channel can be modeled in 
terms of a 4-dimensional observation vector 

� ⎡ 
y1 

�y2 
⎢ 

� ⎢y = , 
�y3

⎣ 

y4 

which is given by y = x + z, where z � N (0, δ2I) and z is independent of x. Under 
H = H0, 

� ⎡ 
x1 

�x2
⎢ 

� ⎢x = 
� 0 ⎣ , 

0 

whereas under H = H1, 
� ⎡ 

0 
� 0 ⎢ 
� ⎢x = . 
�x3

⎣ 

x4 

The xi are independent, identically-distributed (IID) N (0, �2) random variables. Fur­
thermore, the two hypotheses are equally likely. 

2(a) Show that the ML receiver calculates v0 = y 2 + y 2 and v1 = y 2 + y4 , and chooses 1 2 3


H = H0 if v0 √ v1, and chooses ˆ
ˆ	 H = H1 otherwise. 

(b) Find pv0|H (v0 H0) and pv1|H (v1 H0).|	 |

(c) Let u = v0 − v1, and find pu|H (u H0).|

(d) Show that

1


Pr [α H = H0] = 
�2 ,|

2 + 
δ2 

where α denotes the error event Ĥ = H . Explain why this is also the uncondi­∗
tional probability of an incorrect decision. 
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Problem 2.8 
In the binary communications system shown below, messages m = 0 and m = 1 occur 
with a priori probabilities 1 and 3 respectively. The random variable n is independent 

4 4 
1 3 1from m and takes on the values -1, 0, 1 with probabilities 
8 , 4 , respectively 
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m=0 or 1 
source +m 

receiver 
^received m=0 or 1 

r
m̂ 

message signal 
n 

Figure 8-1 
Find the receiver which achieves the maximum probability of correct decision. 

Compute the probability of error for this receiver. 
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