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Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.432 Stochastic Processes, Detection and Estimation 

Problem Set 11 
Spring 2004 

Issued: Thursday, May 6, 2004 Due:	 Next time the Red Sox win 
the World Series 

Final Exam: Our final will take place on May 19, 2004, from 9:00am to 12:00 

noon. 
You are allowed to bring three 8 1 × 11�� sheets of notes (both sides). 
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Problem 11.1 
Let 

y [n] = x [n] + w [n] 

x [n] = h[k]v [n − k] 
k 

be a discrete-time random processes, where v [n] and w [n] are uncorrelated, zero-mean, 
white Gaussian noise processes with variances of ν2 = 2/3 and ν2 = 1, respectively 

v w 

and 
�

� �n 
2 

h[n] = u[n]. 
3 

(a) Determine the non-causal Wiener filter for estimating	 x [n] from y [n] and the 
associated mean-square estimation error. 

(b) Determine the causal Wiener filter for estimating x [n] from y [n] and the asso­
ciated mean-square estimation error. 

(c) Determine the Kalman filter equations for generating	 x̂ [n|n], the linear least-
squares estimate of x [n] at time n based on the data y [0], y [1], . . . , y [n]. Also, 
specify a recursion for the mean- square error in the estimate x̂ [n|n]. 

(d) Determine limn�� �e [n|n], the steady-state estimation error variance for your 
estimator in part (c). Explain the similarity or differences between your answer 
and the error variances you calculated in parts (a) and (b). 

(e) The sequence v [n] could represent a message being transmitted through a noisy, 
dispersive communication channel, in which case this is the signal of interest. 
Give an efficient algorithm for generating v̂ [n|n], the estimate of v [n] based on 
y [0], . . . , y [n]. 
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Problem 11.2 
Suppose we are transmitting a zero-mean, WSS, white sequence x [n] with variance 
ν2 through the channel 

h[n] + y[n]x[n] 

w[n] 
Figure 2-1 

where w [n] is zero-mean, WSS white noise with variance ν2 that is uncorrelated with 
w 

x [n] and where h[n] is the FIR filter 

1 
h[n] = α[n] − α[n − 1]. 

2 

(a) Write down a state-space model for the problem using 

x [n] 
s[n] = 

x [n − 1] 

as the state vector. 

(b) Determine a recursive algorithm for computing x̂ [n|n], the linear least-squares 
estimate of x [n] based on y [0], . . . , y [n]. 

(c) Determine limn�� �e [n|n], the steady-state filtering error variance. 

(d) Compare your answer to part (c) to the error variances of the causal and non-
causal Wiener filters. 

Problem 11.3 
Consider a system with the following state space description 

x [n + 1] = a x [n] + v [n] 

y [n] = x [n] + w [n] 

where v [n] and w [n] are uncorrelated, wide-sense stationary, zero-mean, white random 
processes with variances 1 and ν2 respectively. 

w 

(a) Suppose the process x [n] starts at time n = −→. Determine the unit-sample 
response h[n] such that the system can be expressed in terms of the following 
block diagram. 
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+v[n] h[n] y[n] 

w[n] 
Figure 3-1 

(b) Suppose the process x [n] starts at time n = 0 and that the initial condition x [0] 
has mean zero, variance ν2 and is uncorrelated with both v [n] and w [n] for all 0 

n.	 For which values of a and ν2 is the process y [n] wide-sense stationary (for 0 

n ∼ 0)? 

(c) Suppose that 

16 19 
x̂ [2|2] = x̂ [1|1] + y [2],

51 51 
3 

�e [1|1] = 
4 

where x̂ [n|k] is the linear least-squares estimate of x [n] based on y [0], y [1], . . . , y [k], 
and �e [n|k] is the associated mean-square estimation error. Determine a and 
ν2 . 

w 

Problem 11.4 
The figure shown below is a noise cross-correlation technique for measuring part of 
the frequency response of a discrete-time, linear, time- invariant system. 

x�[n]

H1(e

j�)

� h1[n] 


� z [n] N-point av­w [n] � �	 Ĥ 
erage 

y�[n]

H2(e

j�)

� h2[n] 

In this figure: 

1.	 w [n] is a zero-mean stationary white Gaussian discrete-time noise process with 
Sww (e

j�) = q. 

2. System 1 has unknown real-valued impulse response	h1(t) and associated fre­
quency response H1(e

j�). 
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3. System 2 is a known passband reference filter with frequency response 

H2(e
j�) = 

q−1 |� − �0| ≈ � or |� + �0| ≈ � 

0 elsewhere in |�| ≈ λ 

where �0 is the center frequency of the passband of this filter. 

4. The N-point averager produces as its output 

(N−1)/2 
1

Ĥ = z [n]
N 

n=−(n−1)/2 

where N is an odd integer. 

(a) Find the	 mean function mz [n] and the covariance function Kzz [n,m] of the 
process z [n]. Express your mean function answer as an explicit function of the 
unknown frequency response H1(e

j�). You may leave your covariance function 
answer in terms of h1[n] and h2[n], or H1(e

j�) and H2(e
j�). 

ˆ(b) Find the mean and variance of H in terms of mz [n] and Kzz [n,m]. 

(c) Combine your results of (a) and (b) to obtain a simple approximate expression 
for E(Ĥ ) which applies when 

j�) � H1(e
j�0 )H1(e


over the passband of H2(e
j�).


(d) Under the assumption that |H1(e
j�)| ≈ M < → for all � where M is a known 

constant, show that var( ̂H) � 0 as N � →. 

(e) Suppose w [n] is applied only for |n| ≈ K − 1, where K is an odd integer, and 
zero input is applied to the two systems for |n| ∼ K. For what range of (�, N) 
values will Ĥ be about the same for this 2K-point input as it would be for the 
case when w [n] is applied for −→ < n < →. Briefly discuss how the resolution 
and variance of Ĥ behave for different (�, N) choices within this range. 

Problem 11.5 
We are interested in detecting the presence of a random signal x [n] based on obser­
vations y [n] corrupted by random noise w [n]. Our hypotheses, therefore, are: 

H0 : y [n] = w [n]


H1 : y [n] = x [n] + w [n]
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where n = 0, 1, . . . , N − 1. The processes x [n] and w [n] are independent, zero-mean, 
stationary, Gaussian random processes with power spectral densities Sxx (e

j�) and ν2 
w 

respectively. The hypotheses H0 and H1 are equally likely. 
Consider a detector of the form 

ˆ
1 
� �	 H=H1 

ŜN (e
j�) F (ej�) d�δ =	 � π (1)

2λ 
−�	 Ĥ=H0 

where ŜN (e
j�) denotes the periodogram of the data, i.e., 

� �2 
� N−1 

� 
ˆ

� 
SN (e

j�) = �YN (e
j�) 
�2 

=
1 
�

� y [n] e −j�n �
� . 

N � � 
n=0 

We restrict our attention throughout this problem to the large N scenario. In this 
regime, you may exploit, among other approximations, 

j�) j�)E ŜN (e � Syy (e

j�) j�) α(� − ω)cov ŜN (e
j�), ŜN (e � 

1 
S2 (e

yyN 

(a) Determine the function F (ej�) in (1) that maximizes the performance metric 
2(E [δ | H = H1] − E [δ | H = H0])

D =	 , 
var [δ | H = H0] 

which is referred to as the “deflection” metric. Also determine the corresponding 
value of D. 

(b) Suppose that instead of maximizing the deflection performance metric, we wish 
to minimize the probability of error. Determine F (ej�) and π in (1) so that 
the resulting detector asymptotically minimizes the probability of error in this 
Gaussian, “stationary process, long observation time” scenario. 

(c) Under what conditions on Sxx (e
j�) can the detector you determine in (a) achieve 

a probability of error close to that achieved by the detector you determine in 
(b). 

Problem 11.6 

(a) A discrete-time Gaussian stochastic process	 y [n] is generated by a first-order 
system driven by white Gaussian noise w [n]: 

y [n + 1] = �y [n] + w [n], n = 0, 1, 2, . . . 

where y [0] � N(0, P ) is independent of the noise sequence. Also, w [n] � 
N(0, ν2), and � is unknown. Find the ML estimate of � based on observation 
of y [0], . . . , y [N + 1]. (Hint: y [n] is a Gauss-Markov process.) 
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(b) Now suppose y [n] is a Gaussian process generated by an (M +1)th-order system 
driven by white Gaussian noise w [n]: 

y [n + 1] = a0y [n] + a1y [n − 1] + · · · + aM y [n − M ] + w [n], n = 0, 1, 2, . . . , 

where [y [−M ] · · · y [0]]T � N(0,R) is independent of the white noise sequence. 
TAlso, w [n] � N(0, ν2), and a = [a0 · · · aM ] is unknown. Find the ML estimate 

of a based on observation of y [−M ], . . . , y [N + 1]. 

(Comment: In reality, we may not know the density for the initial conditions, 
or this density may depend on a. In this case, we can use the same solution 
as an approximate ML estimate. Since the approximation effectively does not 
attempt to model the first M + 1 points, it is good only for large N .) 

(c) Sometimes it is useful to take a discrete-time sequence y[−M ], . . . , y[N + 1] and 
try to model each sample as a linear combination of its past samples. That is, 
we seek to find the best a = [a0 · · · aM ]

T so that we minimize 

� �2N +1 M 

y[k] − aiy[k − 1 − i] . 
k=1 i=0 

Find the optimal a, and compare with part (b). 

(Comment: This technique is referred to as the “autocovariance method of 
linear prediction” and is widely used. One successful application is speech com­
pression: A deterministic speech waveform is represented in terms of linear 
combinations of its past samples, and the error signal is transmitted. Because 
the error signal has smaller energy than the speech signal, for a given quanti­
zation error level, it takes fewer bits to transmit the error signal.) 

6




Problem 11.7 

(a) Consider a causal LTI system, with input	u[n] and output y[n], described by 
the system function 

1 − az−1 

H(z) = 
1 − bz−1 

Show that each of the following two block diagrams represents a realization of 
this system, i.e., the system function for the causal LTI systems described by 
each of these systems equals H(z): 

System A 

u[n] �
� 

�
� 

� y[n] 
� � 

� � 

z−1 z−1 

� −a b � 

System B 

�
� 

�
� 

� y[n] 
� � 

� 

z−1 

b � � −a 

(b) Write the state equations 

x[n + 1] = Ax[n] + Bu[n] 
y[n] = Cx[n] + Du[n] 

for each of the two systems in part (a), taking the outputs of the delay elements 
as state variables. 
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� � � 

� � ? 
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� � ? 

� 

� 

� 

� ? � � ? � 

� 

� 

(c) Consider a causal LTI system, with input u[n] and output y[n] described by 

−1)1 + z−1 − 2z−2 (1 − z−1)(1 + 2z
H(z) = 

1 − 5 z−1 − 3 z−2 
= 

(1 + 1 z−1)(1 − 3z−1)
2 2 2 

Determine two realizations of this system of the following two forms (i.e. find

the coefficient values indicated by question marks).


System C 

u[n] �
� 

�
� 

�
� 

�
� 

� y[n] 

−1 −1z z

? ? 

System D 

u[n] �
� 

�
� 

� y[n] 

−1z

−1z

? 

(d) Write the state equations for the two systems of part (c), again taking the 
outputs of unit delay elements as state variables. 

8




� 

(e) (practice) Write the system function as 

b c 
H(z) = a + + 

1 + 1 z−1 1 − 3z−1 
2 

Find a, b, and c, construct a block diagram for a realization suggested by this 
form, and write the corresponding state equations. 

Problem 11.8 
Consider the following state variable model driven by zero-mean white noise 

x [n + 1] = A[n]x [n] + G[n]w [n] 

where w [n] is uncorrelated with the initial condition x [n0], and 

Kww [n,m] = Q[n]α[n − m] 

(a) Let Px [n] = cov(x [n], x [n]). Show that Px [n] satisfies the recursion 

Px [n + 1] = A[n]Px [n]AT [n] + G[n]Q[n]GT [n] (2) 

with initial condition Px [n0] = cov(x [n0], x [n0]) 

(b) Suppose for the rest of this problem that A[n] = A, G[n] = G, and Q[n] = Q, 
i.e. that the coefficient matrices in the state model are constant and w [n] is 
WSS, with the covariance of w [n] equaling Q. Let 

Kxx [n,m] = cov(x [n], x [m]) 

(i) First, show that

Kxx [n,m] = KT [m,n]


xx 

(You don’t need the state equations or anything since the second lecture 
to show this.) 

(ii) Show that 

An−mPx [m] n ∼ m 
Kxx [n,m] = 

Px [n](AT )m−n n ≈ m 
(3) 

where for k > 0, Ak denotes the product of the matrix A with itself k 
times, and by convention A0 = I. 
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(c) A result we will not show (but which is nevertheless true) in general is that if 
all of the eigenvalues of A have magnitude less that 1, then Px [n], which is the 
constant parameter case satisfies 

Px [n + 1] = APx [n]AT + GQGT 

converges to a limit, which we denote by Px . 

(i) Show that this is true in the scalar case, i.e. when x [n], A, G, W , Q are 
all numbers, and compute the limiting value of Px . 

(ii) Explain why,	 in the vector case, the limiting value of Px satisfies the 
discrete-time Algebraic Lyapunov Equation 

Px = APx A
T + GQGT	 (4) 

(d) Suppose that Px [n0] = Px , the solution to (3). Show that in this case, x [n] is 
WSS for n ∼ n0, i.e. Kxx [n, m] = Kxx [n − m]. 

(e) Consider again the scaler case, and suppose that Px [n0] = Px , the value deter­
mined in part (c), so that x [n] is stationary. Determine two forms for Sxx (z), 
one from (2) and the other from the block diagram 

w [n] � �x [n]H(z) 

where Kww [m] = Q and H(z) is the system functions from w [n] to x [n]. 
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