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Lecture 13 

The Levinson-Durbin Recursion 

In the previous lecture we looked at all-pole signal modeling, linear prediction, and the stochastic 
inverse-whitening problem. Each scenario was related in concept to the problem of processing 
a signal s[n] by: 

⎤ 
s[n] −� 

A 1 − p1 
k=1 ak z

−k 
� 

−� g[n], 

such that 
e[n] � g[n] − φ[n] 

was minimized in some sense. In the deterministic case, we chose to minimize � = n e
2[n], 

⎤ 
and in the stochastic case, we chose to minimize � = E e2[n] 

� 
. The causal solution for the 

parameters ak was found in each case to be of the form 
� 
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⎥ 
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. . . 
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a2 
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� 
� 
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⎥ 
⎥ 
⎥ 
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�s[1] 
�s[2] 

. . . 
�s[p] 

⎡ 

� 
� 
� 
� 

, (1) 

or equivalently, 
Tpεp = rp. (2) 

In this lecture, we address the issue of how exactly to solve for the parameters ak (or equivalently 
for the vector εp). The fact that εp can be found simply by calculating εp = T −1rp is worth a p 
mention, but the focus of this lecture is on an elegant technique for finding εp which is generally 
less computationally expensive than taking a matrix inversion and which is also recursive in 
the filter order p. This method for finding εp is called the Levinson-Durbin recursion. In 
addition to being recursive in p, we’ll see that certain intermediate results from the recursion 
give coefficients for a lattice implementation of an LTI filter h[n] which implements our signal 
model as 

A 
H(z) = S�(z) = �p . 

1 − k=1 ak z−k 

We’ll also see that the Levinson-Durbin recursion prescribes a similar implementation for the 
inverse filter 1/H(z). 
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Let’s first prove the Levinson-Durbin recursion. The basic idea of the recursion is to find the 
solution εp+1 for the (p + 1)st order case from the solution εp for the pth order case. We’ll see 
that this hinges on the fact that Tp is a p × p Toeplitz matrix, that is, that Tp is symmetric, and 
that all entries along a given diagonal are equal. This property of Tp is a result of its definition: 

� �s[i − j].(Tp)ij 

To begin the proof, consider what happens in the p = 1 case. Equation 2 becomes for p = 1 

T1ε1 = r1, 

or 
�s[0]a1 = �s[1], 

giving the solution 
�s[1] 

a1 = . (3)
�s[0] 

The recursion will now be developed by evaluating Equation 2 for order p + 1: 

Tp+1εp+1 = rp+1. 

Because we will be dealing with a solution vector ε� for multiple orders α, we will adopt the 
notation a(�) 

to refer to the parameter ak for the αth-order model. (Note that a is generally k k 

not equal to a(m)
.) Equation 2 is therefore represented in matrix form as k 

⎡ 
� ⎡

� (p+1) � ⎡ 
a�s[0] �s[1] · · · �s[p − 1] �s[p] 1 �s[1] 

(p+1) 
⎥ �s[1] �s[0] · · · �s[p − 2] �s[p − 1]� ⎥ 

⎥ a2 
� 
� ⎥ �s[2] � 

⎥ � ⎥ � 
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⎥ 
⎥ . . . 

. . . 
. . . 

. . . 
. . . 

� 
� ⎥ . . . � = ⎥ 

⎥ . . . 
� 
� . 

⎥ � 
⎥ 
⎦�s[p − 1] �s[p − 2] · · · �s[0] �s[1] 

� 
� ⎥ 

⎦a
(p+1) 
p 

� 
� 

⎥ 
⎦ �s[p] 

� 
� 

�s[p] �s[p − 1] · · · �s[1] �s[0] 

The matrix Tp+1 relates to Tp as 

⎥ 
⎥ 
⎥ TpTp+1 = 
⎥ 
⎥ 
⎦ 

�s[p] �s[p − 1] · · · �s[1] 

and the vector rp+1 relates to rp as 

rp .rp+1 = 
�s[p + 1] 

2 

(p+1) �s[p + 1] ap+1 

⎡ 
�s[p]


�s[p − 1]


. 
�s[1] � 

�s[0] 



� 

� � 

� � � � 

� � 

� 

Defining a new vector �p as rp upside-down, or 
� ⎡ 

�s[p] 
⎥�s[p − 1] 
⎥ �

�p = 
⎥ . � , . 
⎦ . � 

�s[1] 

gives a more compact representation of Tp+1 in terms of Tp: 

Tp �p 
.Tp+1 =

(�p)
T �s[0] 

Let’s now represent the (p + 1)st-order parameter vector εp+1 in terms of the pth order vector 
εp, a correction term kp+1 and a correction vector �p as 

εp �pεp+1 = 0
+ . (4)

kp+1 

Equation 2 for order p + 1 is therefore represented in terms of the pth order equation as 
� ��� � � �� � � 

rpTp �p εp + 
�p = 

(�p)
T �s[0] 0 kp+1 �s[p + 1] 

, 

which, sorting the equations out, implies 

Tpεp + Tp�p + �pkp+1 = rp (5) 

and 
(�p)

T εp + (�p)
T �p + �s[0]kp+1 = �s[p + 1]. (6) 

Substituting Equation 2 for order p = 1 into Equation 5 then gives 

Tp�pk
−1 (7)p+1 = −�p. 

Note now that since Tp is Toeplitz, the matrix realization of the causal Yule-Walker equations 
for order p (Equation 1) implies also 

� ⎡ (p) 
⎡

� ⎡ 
�s[0] �s[1] · · · �s[p − 1] ap �s[p] 

⎥ (p) � 
⎥ �s[1] �s[0] · · · �s[p − 2] 

�

⎥ap−1�
⎥�s[p − 1] 

⎥ ⎥ � 
⎥ � 

⎥ ... .. . . . .. �

⎥ ... 
� = 

⎥ .. � , 
⎦ . ⎦ . �. �

⎦ � 
�s[p − 1] �s[p − 2] · · · �s[0] (p) �s[1]a1 

or 
Tpρp = �p, 
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where ρp is εp upside-down. This then implies, after substituting in Equation 5, 

�p = −kp+1ρp . (8) 

We’ll now use this and Equation 6 to find kp+1 and thus have all the pieces needed to complete

the recursion.


Pre-multiplying both sides of Equation 8 by (�p)
T gives the scalar relation


(�p)
T �p = − (�p)

T ρpkp+1. 

Note, however, that the scalar relation (�p)
T ρp = (rp)

T εp also holds, since rp is a re-ordered 
version of �p in the same way that εp is a re-ordered version of ρp. This allows us to re-write 
the above equation as 

(�p)
T �p = − (rp)

T εpkp+1, 

which implies from Equation 6 

(�p)
T εp − (rp)

T εpkp+1 + �s[0]kp+1 = �s[p + 1], 

or 
�s[p + 1] − (�p)

T εp . (9)kp+1 = 
�s[0] − (rp)

T εp 

Equations 4, 8, and 9 therefore define a recursion formula for finding the (p + 1)st-order model 
(p+1)

parameters a in terms of the previously-obtained pth-order solution. Equation 3 gives a k 
(1)

closed-form solution for a1 , which provides a starting point for the recursion. Since this ends 
a considerable algebraic detour, we’ll now summarize what was concluded. 
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The Levinson-Durbin recursion 

• Problem statement: for order p, solve 
�p a

(p)
�s[i − k] = �s[i]k=1 k 

• Definitions: 
⎢ 

(p)
εp = a

(p)
, a2 , . . . , a

(
p
p) 

⎣T 

1 
⎢ 

(p)
ρp = a

(
p
p)

, ap−1, . . . , a
(p) 

⎣T 

1 

rp = [�s[1], �s [2], . . . , �s[p]]T


�p = [�s[p], �s[p − 1], . . . , �s[1]]
T


• Solution for p = 1: a(1) 
= 

�s[1] 
1 �s[0] 

• Recursion: 

�s[p + 1] − (�p)
T εp
kp+1 = 

�s[0] − (rp)
T εp


�p = −kp+1ρp 
� � ⎡

(p) 
⎡ 

(p) 
1a ap 

⎥ (p) � ⎥ (p) � 
� � � � ⎥ a2 � � 

⎥ � ⎥ �εp 
⎥ . 

�εp+1 = + 
�p = ⎥ .. � − kp+1 

⎥ ap

.. 

−1 

⎥ . � ⎥ �0 kp+1 
⎥ � ⎥ �(p) (p) 

� ⎦ a �⎦ ap 1 
0 −1 

In parting, note that when these coefficients k� are used to implement an all-pole lattice filter 
with reflection coefficients k�, the lattice filter’s response is described by 

A 
H(z) = S�(z) = �p . 

1 − m=1 amz−m 

In other words, the impulse response of an all-pole lattice filter with reflection coefficients k�, 
α = 1, . . . , p, as prescribed by the Levinson-Durbin recursion, is the pth-order model of our 
original signal s[n]. (Likewise, the corresponding all-zero lattice filter implements 1/S �(z).) 
Note further that it is straightforward to determine the stability of an all-pole filter when im­
plemented in lattice form. Specifically, if the coefficients k� all have magnitude < 1, the all-pole 
filter is guaranteed to be stable. (It is left as an exercise to gain intuition for why this is 
so.) This stability criterion is of particular interest in applications where the all-pole filter is 
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implemented with finite-precision coefficients, since determining the stability of a comparable 
direct-form all-pole implementation requires the generally more-expensive process of determin­
ing all of the filter’s pole locations. In addition to the computational benefits gained from the 
Levinson-Durbin recursion, its connection with the lattice structure (and the structure’s asso­
ciated stability metric) enables a wide array of applications, including real-time speech coders 
and synthesizers. 
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