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Lecture 5

Sampling Rate Conversion

Reading: Section 4.6 in Oppenheim, Schafer & Buck (OSB).

It is often necessary to change the sampling rate of a discrete-time signal to obtain a new
discrete-time representation of the underlying continuous-time signal. The desired system is
shown below:
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Sampling Rate Compression by an Integer Factor

To reduce the sampling rate of a sequence by an integer factor, the sequence can be further
compressed or decimated as depicted in OSB Figure 4.20. This discrete-time sampler can be
interpreted as the cascade of a D/C converter and a C/D converter in which:

z[n] = x.(nT) ,
zq[n] = z[nM] = x.(nMT).

The discrete-time Fourier transform of z[n| and x4[n| are
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To relate X (e/“) and X4(e/*), rewrite with
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As an example, the following figure illustrates decimation by M = 2 in the time domain. We
see that re-sampling the continuous signal at MT is equivalent to keeping only every M-th
sample. In this cascaded system, the value of T is arbitrary and not affected by the original
sampling frequency of x[n].
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Time domain illustration of decimation at rate M = 2

OSB Figure 4.21 shows the corresponding frequency-domain representation. In the frequency
domain, a decimator can be viewed as a sequence of two operations: replication at 2“, and
frequency scaling by ﬁ In general, the sampling rate of a signal can be reduced by a factor of
M without aliasing if the signal is bandlimited to §7. On the other hand, if the signal is not
bandlimited, its bandwidth can be reduced first by discrete-time low pass filtering. Cascad-
ing an anti-aliasing filter with a decimator gives a downsampler. OSB Figure 4.22 illustrates
downsampling with and without aliasing.



Sampling Rate Expansion by an Integer Factor

A typical system for increasing the sampling rate of a discrete sequence by an integer factor is
illustrated in OSB Figure 4.24. Expressed in terms of Fourier transforms, the expander output
is:
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Expanding changes the time scale, and the LPF interpolates to fill in the missing values. As
an example, the next figure shows upsampling at the rate of L = 2 in the time domain; for the
corresponding spectra, see OSB Figure 4.25.
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Time domain illustration of upsampling at rate L = 2
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Changing the Sampling Rate by a Non-Integer Factor

By combining decimation and interpolation, the sampling rate of a sequence can be changed
by a noninteger factor. For example, in OSB Figure 4.28 is a system for producing an output
sequence with sampling period % It is preferred that the interpolator precedes the decimator
to avoid possible aliasing, ie. decimation first may create aliasing since the spectrum is replicated
at less than 27. By comparison, when a compressor and an expander are cascaded (without
the LPF’s), it does not matter in what order they are placed, as long as the rates M and L are
mutually prime.



