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This 15 a closed book exam, but three 81”5 11” handwritten sheets of notes (both
) 3
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Calculators are not allowed.
Make sure you have all 24 numbered pages of this exan.
There are 9 problems on the exam.

The problems are not in order of difhiculty. We recoinmend that vou read through all the
problems, then do the problems in whatever order suits vou best.

A correct answer does not guarantee full credit, and a wrong answer does not guarautee
loss of credit. You should clearly but coucisely indicate your reasoning and show all
relevant work.

Please be neat -we can not grade what we can not decipher.

Only this exam booklet is to be handed in. You may want to work things through on
scratch paper first, and then neatly transfer the work you would like us to look at into
the exam booklet. Let us know if you need additional scratch paper.

We will again be using the EGRMU grading strategy. This strategy focuses on your level
of understanding of the material associated with each problem. Specifically, when we
grade each part of a problem we will do our best to assess, from your work, your level of
understanding.

Graded Exams and Final Course Grade:

Graded exams, graded Project IIs, and final course grades can be picked up from Eric
Strattman (in 36-615 or 36-680, depending on the timne of day) on or after WEDNESDAY
morning, December 21. If you would like your graded exam and project mailed to you,
please leave an addressed, stamped envelope with us at the end of the exam. We will use
the envelope as is, so please be sure to address it properly and with enough postage. We
guarantee that we will put it into the proper mailbox, but we can not guarantee anything
bevond that.
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Problem 1 (10%)

[5%] (a) z[n| is a real-valued, causal sequence with discrete-time Fourier transform X (€7%). De-
termine a choice for z[n] if the imaginary part of X (e*) is given by:

Im{X(e™)} = 3sin(2w) — 2sin(3w)

Work to be looked at and answer:
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[5%] (b) yr[n]is a real-valued sequence with discrete-time Fourier transform Y, (e/*). The sequences
yr[n] and yi{n] in Figure 1-1 are interpreted as the real and imaginary parts of a complex

sequence yinl, i.e. y[n| =y [n] + jylnl.

yrin

= yrn]

H(e™)

— uln]

Figure 1-1: System for obtaining y[n| from y,[n].

ylnl = yr[n] + jyiln

Determine a choice for H(c?*) in Figure 1-1 so that Y(e/*) is Y.(¢/%) for negative fre-
quencies and zero for positive frequencies between —7 and w, i.e.

Work to be looked at and answer:

M) = Yeled™) + Y (ed™)

= N,{e3*) {\\ s i H{e

Yole?),

V(ed¥) =
-

< w <l

O<w<an

. AN
\

362N

/)

To SCLJ({S‘{:\/ “H\é Congfranhf’!

. g . A i: 3 —
‘__\_ AH&Q‘)&U): v Tt L wd O
H(edw)= b ©) —wdweo

\\3 O L w LT
7




Problem 2 (12%)

Consider the system shown in Figure 2-1, with H;(e/*) and Hy(jQ?) as depicted in Figure 2-2.

Tz H(e?¥) D/C

o !

T

y[n]
Ha(§9) c/D I3
!
T

Figure 2-1: System for calculating y[n} from z[n].

Hi(e?)

Periodic, with a period of 27

U
—T wWo

Wo T

Hy(j2)

-0

Qo

Figure 2-2: Frequency responses of discrete-time LTI filter H; and continuous-time LTI filter

Hy.



Name:

[6%\} (‘d) If TL = Tz ==

[6%] (b)

T

-]

1071 s and Qp = ETT is there a choice of wg > 0 for which the overall

system from z[n] to y[n] in Figure 2-1 is a discrete-time LTI system? If so, specify at
least one non-zero value of wg for which the system is LTI, Otherwise explain why the

system cannot be LTI

Work to be looked at and answer:

When Ty = T5 the D/C converter, CT LTI filter, and C/D can be replaced with a DT
LTI filter with frequency response

Hy() = Hy (J;) Pee 1ol < T

An overall effect of the expander and compressor is Lo stretch the frequency axis of the input
DTFT by a factor of %, s0 the system cannot be LTI in this case because the stretching is
not undone. It can be verified that the output when x[n] = g[n — 1] is not a delay of the

output when z{n] = g[n] for all g[n].

For this part, assume that T; = 107 s and wy = 7. Determine the most general conditions
on §2g > 0 and T». if any, so that the overall system from z[n} to y[n| in Figure 2-1 is an

LTI system.

Work to be looked at and answer:

To undo the scaling effect on the frequency axis, we need to set Ta = %Tl. With this
choice of Ty the C/D and D/C will implement a sample rate increase by a noninteger factor
of % The overall system then simplifies to a DT LTI system as shown on the next page,

without any additional conditions on Qp.-
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Problem 3 (12%)

The following are three proposed identites involving compressors and expanders. For each, state
whether or not the proposed identity is valid. If your answer is that it is valid, explicitly show
why. (In doing this you may make use of the known identities on page 11.) If your answer 1s
no, explicitly give a simple counterexample.

[1%] (a) Proposed identity (a):

> \L 2 Half-sample delay . ="

i

™

Work to be looked at and answer:
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[4%] (b} Proposed identity (b):

] \L 2 hin] | T 2 .
-] \L 2 hin + 1] T ) —>_.Z_H

Work to be looked at and answer:
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[4%] (c¢) Proposed identity (c):

0

where L is a positive integer, and A is defined in terms of X (/) and Y (e/¥) (the respec-
tive DTEFTs of A’s input and output) as:

i) —d 4wl

L

Y () = (X(e))

Work to be looked at and answer:
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Correct identities you may refer to without proof

Noble identities:
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Problem 4 (15%)

We find in a treasure chest a zero-phase FIR filter hfn| with associated DTFT H (e/%), shown

in Figure 4-1.

12 T ¥ T T T T T T T

Filter response

i

-1 -08 -06 -04 -02 ¢] 0.2 0.4 0.6 08 1

0.2

Normalized frequency w { X7 radians/sample)

Figure 4-1: Plot of H(e?) from —w <w < 7.

The filter is known to have been designed using the Parks-McClellan (PM) algorithm, as sum-
marized on page 15 of this exam. The input parameters to the PM algorithm are known to

have been:

e Passband edge wy: 0.47

Stopband edge w,: 0.67

Ideal passband gain Gp: 1

e Ideal stopband gain G,: 0
e Error weighting function W{w) =1

The value of the input parameter N to the algorithm is not known.
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Also along with the plot s a fortune i gold, to be claimed by whoever can reproduce the tilter
with the Parks-McClellan algorithm for these specifications and with an appropriate value of
N. Multiple winners share the gold. You are the sole referee and judge.

Two entries have been submitted, each with a different associated value for the input parameter
N to the algorithm.

e Entry 1: N = N,

e Entry 2: N = Ny > N,

Both entrants claim to have obtained the required filter using exactly the same Parks-McClellan
algorithm and input parameters, ezcept for the value of V.

After inspecting both entries, you determine that they both have DTFTs identical to Figure
4-1, 50 you deem both of them winners.
[3%] (a) What are possible values for N?

Work to be looked at and answer:
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[3%] (b) What are possible values for Ny > N;7

Work to be looked at and answer:
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[4%)] (¢) Are the impulse responses hy[n] and ha[n] of the two filters submitted by entrants 1 and
2 identical?

Work to be looked at and answer:

K%/ Swe both howt DIFT ideatiad o l\?Tq_L
hJ= 0T

(5%] (d) Both entrants claim that there can only be one winner, since the alternation theorem
requires “unigueness of the rth-order polynomial.” If your answer to (c) is yes, explain
why the alternation theorem is not violated. If your answer is no, show how the two
filters, hy[n] and hs[n] respectively, relate.

Work to be looked at and answer:
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The Parks-McClellan algorithm for zero-phase lowpass filter design:

The algorithm for approximating a lowpass design with a zero-phase PM filter takes as input
parameters the following:

e Passband edge frequency wy

o Stopband edge frequency wy

o [deal passband gain G

o Ideal stopband gain Gy

e Error weighting function W{w)

e Length N of the filter response hfn], where

N -1
hin] =0 for |nf > ~——.

and N must be odd.

The algorithm returns a filter impulse response which satisfies the alternation theorem, stated
below.

Alternation theorem: Let Ip denote the closed subset of the disjoint union of closed subsets

P(r) = Zakazk
k=0

is an rth-order polynomial. Also, Dp(x) denotes a given desired function of z that is continuous
on Fp; Wp(r) is a positive function, continuous on Fp, and

of the real axis x. Then

Ep(z) = We(z) [Dp(z) - P(2)]
is the weighted error. The maximum error is defined as
1B = max |Ep(2)] -
relp
A necessary and sufficient condition that P(z) be the unique rth-order polynomial that mini-
mizes || E|| is that Ep(z) exhibit at least (r +2) alternations; i.e., there must exist at least (r+2)

values z; in Fp such that x, < T3 < --- < 2,49 and such that Fp(z;) = —Ep(zip) = || E|l
fori=12 .., 0 +1).
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Problem 5 (12%)

[6%) () X (/) is the DTFT of the discrete-time signal

o] = (%) uln].

Find a length-5 sequence g[n] whose 5-point DFT G[k| represents samples of the DTFT
of z[n}, ie.
gln] =0 for n <0, n>4

and .
Glkl = X(e?7s ) for k=0,1,...,4.

Work to be looked at and answer:

To obtain 5 samples of X (e?*), we need to time-alias z[n] to 0 < n < 5 and take a DFT. Sampling
at 5 points in frequency corresponds to periodically replicating xz[n] with a period of 5, summing the

replicas, and extracting the first 5 points by multiplying with a window.

gn] = Z z[n + 5mj for0<n <5
:Zx[n-}—Sm} for0<n<5
m=0

o 1 n+5m
:Z(§> for 0 <n<5H

:(%) ;(%)sm for0<n<5
) o
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[6%] (b) Let w[n] be a sequence that is strictly non-zero for 0 < n < 9 and zero elsewhere, ie.

win] #£0, 0<n< 9

wln] =0 otherwise

Determine a choice for wn| such that its DTFT W (e’™) is cqual to X (/%) at the fre-

- 9 -
quencies w = “gk, k=0,1,...,4, ie.

2nk ik

W(es )= X(ejgo yfor k=0.1,... 4

Work to be looked at and answer:

To get the samples of W{el¥) at 5 frequency points, we need to alias w{n] to 5 points and take
its DFT. 1f
wn]+wn+95 0<n<s
weln] =
0 otherwise
then wq[n] must be equal to g[n] to have the same DFT. So w(n} must satisfy w{n] +wn + 5] = gln]
for 0 <n < 5.
We can find one answer that works by constraining the DTFT of w(n] to be equal to the DTFT
of X (&%) at 10 points in frequency, which would include the 5 required by the problem. Then we

tinie-alias z{n| to the 0 < n < 10 range to obtain

wln] = (%)n (W) for 0 < n < 10

as a possible answer, which satisfies the constraint above.
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Problem 6 (10%)

A system for the discrete-time spectral analysis of continuous-time signals is shown in Figure 6-

20 ol ofn) -
.+ D 32-point DFT | o

Figure 6-1: Spectral analysis system.

win] is a rectangular window of length 32:

(1/32), 0 <n <3t
wln] =
0, otherwise

& o [5,) (=23
wn (=] W (=
T T T

1

20 log, (IVIK])) (dB)
& 3
©
A_O
29

!

N o

W (=]

T T

—D
1

|

5 10 15 20 25 30
k

Figure 6-2: Output [V[k]| in dB

20
0
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Listed below are ten signals, at least one of which was the input z.(t). Indicate which signal(s)
could have been the input z.(t) which produced the plot of |V[k]| shown in dB units in Figure
6-2. As always, provide reasoning for your choice(s).

x1(t) = 1000 cos(2307t) z6(t) = 1000¢? 07t

x2(t) = 1000 cos(1157t) x7(t) = 10 cos(2507t)
v3(t) = 10704607t xg(t) = 1000 cos(218.757t)
z4(1) = 10007 (Z30)7t ro(t) = 106720007t

z5(t) = 10 (230)7 r10(t) = 1000e7 (187-5)mt

Work to be looked at and answer:

— X (1) coinot be a coSinc, because a -cosine wsuld
have @ Second pealk +he Mcga“(?i\/{ -pr*e%uem.ixe_gj
(e, in The upper hald of the DET.

¥, (), wo (), Xqlth, xglt) are eliminatec .
B \\.\’{}ﬂ\ =~ odB = lavo
Xz (), %o lt) Xq(’fC) are eliminated because Their
ampl_ifudcs are Teo |ow +o have ?roduz‘ecf &
\7ea-l< mc«jnﬁude of 900 in the DET
— The CT ﬁreiuﬂnc_\/ o X)) cannet corec s]oeﬂcf Q,XOL(:'H)(
1o a prQ?ueﬂC\( Wy = %’% 3{1”4_?165{ by +he DFET
Otherwise, +the DET woldd Pe noen—zero at
{Xac*t\/ one value of k.

% () 2som = T = k=4) and

X, ) U87-S‘ri —> }:—;’i - K;%) ar< Q,hminq{fd

. }
“&\gk’tvl‘ e The \svx‘i\/ $i3y§q§ 4hot cowld have been

the ';n?u“§5' X({\Vt\)
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Problem 7 (12%)

z{n] is a finite-length sequence of length 1024, ie.
z[n] =0 for n <0, n > 1023.

The autocorrelation of z{n] is defined as

o<

Ryr[m] = Z r{njz(n + mj,

n= —oo

and Xy[k] is defined as the V-point DFT of z[n], with N > 1024.

We are interested in computing R”(m] A proposed procedure begins by first generating the
N-point inverse DET of | X [k]]? to obtain an N-point sequence qv[n] Le.

gv[n] = N-point IDE'T {|XN[/CH'2} _

[6%] (a) Determine the minimum value of N so that R,.{in] can be obtained from gn[n]. Also
spccify how you would obtain K (] from gy[n].

Work to be looked at and answer:

IZN HF\ Y[»ﬂ)(x{ 1‘ = O for w102, m > 1033

/_A/ pa-w( O"'C ﬂa&'—r

7 * oo
(K"’U(ﬂ - X"’[k}XMUJ - ’Pmnt DP‘ X((e“))u]@ x[n&\ e

x| (- n[@x0
In INE "
O

jnl ("j_\ ': Y[«m))‘,ﬂ)]%{ X[ﬂl\;;m . |/ Mj/&/ IU @O’cu[a/ 0’6(‘,4’1714
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[6%] (b) Determine the minimum value of N so that Ryg[m] for jm| < 10 can be obtained from
gnn). Also specify how you would obtain these values from gn{n]-

Work to be looked at and answer:
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Problem 8 (8%)

A system for examining the spectral content of a signal z[n] is shown in Figure 8-1. The filters
hln] in each channel are identical three-point non-causal FIR filters and have impulse response

hn] = hoén) + h1dln + 1] + hodn + 2].

The filter outputs are sampled at n = 0 to obtain the sequence yxl0], £ =0,1,2,3.

n=20

» 1 hin|] b——e | 7.
———»——(}(}— [] e yo{0]

e 12mn(0/4) Kn =0
' o | A N
| _ yi[n)

zfn| e——>——89 o i2mn(1/4) n-—->0
Y

e~j27rn(2/4) 7 =0

hin FH———————e Y-
Ty = a )

6—j2ﬁn(3/4)

S

Figure 8-1: Filter bank network.

An alternative to the system in Figure 8-1 has been proposed using a 4-point DFT as shown
in Figure 8-2.

4-point

Tinj e—»— L » o Pkl = }3_ pln g j2mkn/4
] g[n] —*—C?—>—'+ DET (k] = > n=opln]

r(n]

Figure 8-2: Alternative system.
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Determine g[n] and r[n] so that Pk} = y{0].

Work to be looked at and answer:

Far Figure T-1,
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Problem 9 (9%)

Consider the system shown in Figure 9-1. The subsystem from z{n] to y[n] is a causal, LTI
system implementing the difference equation

y{n] = aln] + ayln — 1.
z[n] is a finite length sequence of length 90, i.e.

zln] =0 forn <0andn>39.

n=M

Y
Y
Y

. y[M]

2
—

a

Figure 9-1: System for calculating y[M] from z{n].

Determine a choice for the complex constant a and a choice for the sampling instant M so that

y[M] = X(e)]

w=2/60
Work to be looked at and answer:
To compute the DTEFT of z[n] at a particular frequency point we need the unpulse response of
the LTI filter to be a complex exponential. If a = W;,k = /%, we can write
M
— k(M-
y[M] = Z$["]WN (M=n)

n=0

We need the output sample to be equal to the DTFT of z[n} evaluated at w = %%, ie.

M 89
Y el W WME = N s,
n=0 n=0

We can see that we need M > 89, otherwise samples of z[n] will be disregarded in the computation.

If M is chosen to be an integer multiple of N, then I/V}QM’C =1 and we eliminate that term. All that

remains is to choose £ and N such that % =L

g’d.
Ifk=1, N =60and M = 120 we have
120 89
y[M] = > anWgWe'™ = znwg
n=0 n=0

So we can use a = Wgy! = ¢/ and M = 120
In fact, any M that is a multiple of 60 and is greater than 89 will work with this choice of a, due

to the periodicity of Web-



