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Problem 7.1

(a) The normal (Yule-Walker) equations are:
2
¢s[z] = Zakgbs[i - k]a 1=1,2,
k=1

or in matrix form:
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(b) Let s1[n] = (3)"u[n] and s2[n] = (—%)"u[n]. We calculate the following auto- and cross-

correlations for m > 0,
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Since
pslm] = @5, [m] + ¢s,[M] + Psy5,[M] + Psys, [M]

and ¢s[m] is an even function of m, we sum the four correlations and replace m by |m|:

puim] = 111 (1 ‘m‘+46 1\
T 56 \3 21\ 2)
Note that the cross-correlations ¢g,s,[m] and ¢s,s, [m] by themselves are not even.

So ¢s[0] = 4.17, ¢s[1] = —.4345 and ¢[2] = .7678.
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(d)

(2)

(h)

Substituting the values of ¢g[i] into the normal equations and solving for the a;’s results
in a; = —0.0859, as = .1751.

The normal (Yule-Walker) equations are:

3
d)S[Z] = Zak¢5[l - k]) 7’ = 1)2737
k=1

or in matrix form:

bs [O] ¢S[1] bs [2] ai ¢s[1]
¢s[1] ¢s[0]  ¢s[1] az | = | ¢s[2]
¢s2] ¢s[1]  ¢s[0] as ¢s[3]

$s[3] = —.2004.

Substituting the values of ¢;[i] into the normal equations and solving for the a;’s results
in a; = —0.0833, a2 = 0.1738, a3 = —0.0146.

Yes. The signal s[n] is NOT the impulse response of an all-pole filter. Increasing the
order will in general update all previous coefficients in an attempt to model s[n] more
accurately.

In problem 6.7 s[n] was the impulse response of a two-pole system, which we could model
perfectly using a two-pole model. Increasing the order beyond p = 2 achieves nothing. In
this problem s[n] does not arise from an all-pole system, so it is not generally possible to
perfectly model s[n] using only poles. Nevertheless, increasing the order of the all-pole
model will yield a closer and closer approximation.

The difference equation for which the impulse response is s[n] is:
1 1 1
s[n] = —=s[n — 1] + =s[n — 2] + 26[n] + =d[n — 1].
6 6 6
For n > 2 the impulses are zero:

s[n] = fés[n —-1]+ és[n —2].

Thus the linear prediction coefficients are a; = —1/6,a2 = 1/6.



Problem 7.2 (OSB 8.31)

We re-write the desired samples of X (z) in terms of the DFT of a second sequence z1[n].
x[n] is only non-zero for 0 <n < 9:

9 —n
X(2) |,mg seitemrnono) = Y x[n] (0-5€j[(2ﬂk/10)+(7r/10)])
n=0
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9
— Z xl[n]e—j(%r/lo)kn
n=0

= Xi[k], k=0,1,...,9

where we have defined z[n] = (2¢777/ 10)” z[n] and we recognize the second last line as the
10-point DFT of z1[n].
Thus z1[n] = (Qe*j”/lo)nx[n}.

Problem 7.3 (OSB 8.32)

Answer: (c)

Since y[n] is x[n] expanded by 2, the DTFT Y (/%) is equal to X (e?%), i.e. X (e/¥) with
the frequency axis compressed by a factor of 2. The 16-point DFT Y[k] samples Y (e/%) at
frequencies w = %, k = 0,1,...,15, which is equivalent to sampling X (e/*) at frequencies
w = QLSI"’, k=0,1,...,15. But since X (e/*) is periodic with period 27, the last eight samples
are the same as the first eight, which in turn are equal to the 8-point DFT X|k]. In other
words, Y[k] samples X (e/*) from 0 to 47 instead of from 0 to 27. Therefore Y[k] is equal to

X [k] repeated back-to-back.



Problem 7.4 (OSB 8.37)

e For g;[n], choose Hr[k].

We can think of this as a time reversal followed by a shift by —N + 1.
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This is modulation in time by (—
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e For g3[n], choose Hslk].

We can interpret the DFT X[k| as the Fourier series coefficients of Z[n|, the periodic
replication of z[n] with period N. Given this interpretation, the DFT G3[k] is also equal
to the Fourier series of [n], but considered as having a period of 2N. However, since Z[n]
has a fundamental period of N, the even-indexed coefficients of the length 2N Fourier
series will correspond to the length N Fourier series coefficients (i.e. X[k]), while the
odd-indexed coefficients will be zero because they are not necessary.
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e For g4[n], choose Hglk].

The DFT of g4[n] is equal to the DFS of Z[n], the periodic replication of z[n| with a
period of N/2. In other words, g4[n| is x[n] aliased in time. The DFS of Z[n] is in turn

equal to samples of X (e/*) spaced by ]\2]—72 = %r.
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e For gs5[n], choose Hylk].

We are increasing the length of the signal by zero padding. Thus, we are taking more
closely spaced samples of X (e/%).
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e For gg[n], choose Hi[k].

We are expanding x[n] by 2 to form gg[n]. The DTFT of gg[n] is equal to X (e**), i.e.
X (e’*) with the frequency axis compressed by 2. The 2N values of Gg[k] sample two
periods of X (e/“), so the last N samples are equal to the first N. Moreover, the first N
samples are the same as those in X[k|. Thus Gg[k] contains the same frequency samples

at w = %, but now k ranges from 0 to 2N — 1.

Golk] = ge[1] Wik, k=0,---,2N —1

e For g7[n], choose Hs[k].

We are decimating z[n] by 2, so X (e¥) is vertically scaled by %, horizontally stretched

by 2, and replicated once. We then obtain samples of the resulting DTF'T at frequencies
2
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Problem 7.5 (OSB 8.46)

In general, (i) holds if the periodic replication of z;[n| is even symmetric about n = 0; (ii)
holds if z;[n] has some point of symmetry; (iii) holds if the periodic replication of x;[n] has
some point of symmetry. Note the subtle difference between (ii) and (iii).

e For zi[n]:

Xi1k] = 3(1+WaF) + 1(WE + W3k) + 2(W2k)
= 2W2*{3cos (2k(27/5)) + 1 cos (k(27/5)) + 1}
X1(e7%) = 2e7%*{3cos (2w) + cosw + 1}

(i) No, X[k] is not real for all k.

(ii) Yes, X1(e’“) has generalized linear phase.

(iii) Yes.
e For z3[n]:
Xo(e?) = 34279251 cos (1.5w) + 2cos (0.5w)}
Xo[k] = 34 2W2%*{cos (1.5k(2r/5)) + 2cos (0.5k(27/5))}
= 3+ 2(—1)*{1cos (1.5k(21/5)) + 2cos (0.5k(27/5))}
(i) Yes.
(ii) No.
(iii) Yes.
e For z3[n]:
X3(e™) = 1+2¢772{2cos (2w) + 1cos (1w) + 1}
X3[k] = 1+ 2W2k{2cos (2k(27/5)) + 1cos (k(2n/5)) + 1}
(i) No.
(ii) No.

(iii) No.



Problem 7.6 (OSB 8.59)

We want to compute Rs[k] = R(e/?7#/128) the DTFT of r[n] sampled at 128 equally spaced
frequencies.

Both z[n] and y[n| are signals of length 256, so their linear convolution r[n| has length
511. If we had r[n], we could calculate R;[k] by time-aliasing r[n] to 128 samples (periodically
replicating r[n] with a period of 128 and extracting one period) and taking the 128-point
DFT (module V). However, a linear convolution module is not available, so an alternative way
of time-aliasing r[n| is through circular convolution of z[n] and y[n]. x[n] and y[n| can be
circularly convolved by periodically replicating both signals with a period of 128 using module
I, performing periodic convolution using module III, and extracting one period of the periodic
convolution. The result of this circular convolution is equal to r[n| time-aliased to 128 samples.
However, since the 128-point DFT module (module V) only considers its input between n = 0
and n = 127, the explicit extraction of one period is not necessary.

The implementation just described is pictured below. The total cost is 110 units.

z[n]

11 \%

Problem 7.7

(a) Assuming that the overlap-save method is correctly implemented, the output y[n] of S
can be represented as the linear convolution y[n| = z[n]*h[n]. The impulse response h[n]
corresponding to H[k] is a finite sequence of length 256. However, an ideal frequency-
selective filter has an infinite impulse response. Therefore, S cannot be an ideal frequency-
selective filter.

(b) The impulse response h[n| of S is the IDFT of H[k]. Since H|[k] is real and even in the
circular sense (H[k] = H[((—k))256]), h[n] is real.
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In sum,

256 g<p <255

0 otherwise



