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Problem 6.1
OSB Problem 4.52

(a) We use the polyphase implementation discussed in OSB pages 182-184.

hi[n] = ad[n] + cdln — 1] + ed[n — 2]
haln] = bd[n] + do[n — 1]
hs[n] = d[n—1]

(b) For h[n], 5 multiplications are required for each sample of y;[n].

For hq[n], 1.5 multiplications are required for each sample of wy[n]. For ha[n|, 1 multipli-
cation is required for each sample of wa[n|. If h3[n] is implemented as an FIR filter, then
2 multiplications are required for each sample of ws[n]|. In total, 4.5 multiplications are
required for each sample of ya[n].

Note that if hg[n] were built into the flowgraph as a delay, then 2.5 multiplications would
be required for each sample of ya[n].

Problem 6.2
OSB Problem 4.53

(a) First, we plot X (e/“) (left plot below), and Rg(e/*), after low-pass filtering with cut-off
at m/2 (right plot below):

X(e) Ro(e7*)

- s w /2 w/2 w



The downsampler expands the frequency axis. Since Rg(e’“) is bandlimited to 7/2, no
aliasing occurs (left plot below). The upsampler compresses the frequency axis by a factor
of 2 (right plot below).
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The lowpass filter cuts off at 7/2, hence Yy(e/“) = Ry(e’“) as sketched above.

Although not a formal requirement for this problem, additional insight can be gained by
considering the bottom branch of the system. R;(e/*) appears in the plot below.
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R1(e7%) is not bandlimited to 7/2, so aliasing appears in X;(e/*) after expanding the
frequency axis due to downsampling. However, since Ri(e/*) is zero from —7/2 to /2,
the aliased component does not distort the original one (left plot below). The upsampler
compresses the frequency axis by a factor of 2 (right plot below).
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The highpass filter cuts off at 7/2, hence Y1 (e/%) = R1(e’¥) as sketched above.
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(c) Similar to part (b), we have:
Yi(e?) = 0.5HZ(e?)X(e7) + 0.5H, (') Hy (e? @) X (e7(0HT))

Since H(e/¥) = Ho(e?@tm),

Yo(e'®) = 0.5H2(e’)X (/%) 4 0.5H, () Ho(e!“)) X (@)
Yi(e’®) = 0.5HZ(e/)X (/%) 4 0.5H, () Ho(e!“)) X (@)
Y(ej“’) = Yo(e]w)—i-Yl 63“’)

= 0.5[H2(’%) + HZ ()] X (/) + Hy(e’*)Hy (e “)) X (e7@+m)

Thus, the general condition to guarantee that y[n] is proportional to x[n — ng4| for any
stable input x[n]:

HY (%) + H (%) = Ke /™
Hl(ejw)Ho(ej(w)) =0

i.e.,

Hg(ej(”+”))+H§(ej“’) —  Ke Jnaw
Ho(e/ ) Hy(e/ ) = 0



Problem 6.3

(a) We need 4 multiplications for each value before the downsampler and 8 multiplications
on average for each output sample of .

(b) We can write the system transfer function:
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(¢) Now the whole computational requirement is only 3 multiplications on average for each
output sample of y.

Problem 6.4

(Problem 4, Spring 2005 Midterm)

(a) This part is a straightforward application of the polyphase decomposition. The number
of polyphase components should be a multiple of 3 to be able to take advantage of the
downsampling.

The polyphase decomposition and swapping the summer with the downsampling yields

zq[n] o + agz 3 13 @ Ya[n]

a1 + a4z_3 13
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Now applying the downsampling noble identity yields
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This is efficient because the filtering is done at the lowest possible sampling rate.

(b) T3 and | 2 can be swapped since 3 and 2 are coprime. This result can seen by comparing

the following two systems:

System A:

z[n]
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System B:

The following equations describe the stages of System A:
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The following equations describe the stages of System B:

wpln] = {g

yp[n] = wp[2n]

Therefore,

yaln]
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aln] = z[2n]

otherwise.
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ys[n]

if 5 is an integer,

[5] if § is an integer,

otherwise.

2

otherwise.

if 5 is an integer,



and

2n e 2n s :
x[£] if = is an integer,
ypln] =4 ° -
0 otherwise.

Because for all integer values of n for which 7 is an integer, %" is also an integer and

vice-versa, the systems are equivalent and can be swapped.

This swap therefore leaves Hp(z), which can be written in terms of 2%, in front of a
downsampling by 6. An efficient implementation is then obtained by applying the down-
sampling noble identity:

xp[n] — ’l—6‘ — ‘bo + b1z 4+ by 2 ‘ — ’T—3’ — yp[n]

Here it is easy to say, “I can almost write H.(z) as a function of 2.7 To take advantage

of this near miss, implement H,.(z) as ¢y + c227% + c3271% in parallel combination with
-2

c1z7%

ze[n] co + c227 0 + 32712 16 @ T3 = yeln]

|

612_2 16

Now application of downsampling identities gives:

o

ze[n] 16 co+ ozl + 3272 73 = y.[n]

12 612’71 13

Note also that this answer can be obtained in a perfectly systematic way by applying a
polyphase decomposition. It turns out that some polyphase filters are zero.



Problem 6.5

(a) After a polyphase decomposition of h[n] one obtains the block diagram below:

[n] Te[n] /_D i

whn]—= 12 12 Ey(2)

Zo[n]

12 Ey(2)

Now since z,[n| = 0 for all n and z.[n] = w[n| for all n, dn] is the output of an LTT filter
Ey(z) driven by input w[n], where Ey(z) is the polyphase component containing only even
values of h[n], i.e. eg[n] = h[2n]. This gives us simply:

wln] — | h[2n] | — d[n]

(b) Since upon simplification it becomes evident that the system is LTI, we know that the
output must be WSS for the input random sequence specified. Because of this, Rgq[n, m|
has no dependence on n and is simply

Ragln,m] = a3, > eolKleolm + k] = o5, Y h[2K]A[2(m + k)] ,

k=—o00 k=—o00

the convolution of o2 6[p] with h[2p] * h[—2p] for integer p.
Problem 6.6

(a) There is one output sample generated for every pair of input samples. Even input samples
require 3 multiplies and odd input samples require 2 multiplies. Thus each pair requires
5 multiplies.

(b) Applying the compressor identity to the previous structure results in:
H(z) = Ho(2*) + 2 1 H ().
From the difference equations in the previous part we have:
11,1
— = + =z
378
Ho(z) = FESE

and



Thus,

Therefore, a =1/2,b = —1/3 and ¢ = 1/4.

(c) In this implementation 3 multiplies are required for every input sample. For every output
sample we need to calculate 2 values of v[n|. Altogether we need 6 multiplies per output
sample.

Problem 6.7

®) 2 3 )
S zZ) = + = .
(2) 1—1z71 143271 1411122

Thus, a; = —1/6,a2 = 1/6.

(b) The normal (Yule-Walker) equations are:

2
Sli] =Y anes[i— k], i=1,2,
k=1

ol ed ] e )=l ed ]

(¢) Denote s1[n] = 2(%)"u[n], so[n] = 3(—

or, in matrix form:

)"u[n]. Then for m > 0,

D=

b =12(—3)"
uali) = 2 (3)
bl = 2 (-3)

Thus,

135 1\ 120 7/ 1\™
¢s[m] = H <§> + 7 <—§> .
So, ¢[0] = 26.78, ¢s[1] = —5.36 and ¢s[2] = 5.36.



Substituting the values of ¢g[i] in the normal equations and solving for the a;’s results in

a] = *1/6,0,2 == 1/6

These values are the same as those we found in part (a), as expected.

The normal (Yule-Walker) equations are:

3
Gsli) =D ardsli — k], i=1,2,3,
k=1

or, in matrix form:

]3] = —1.79.

Substituting the values of ¢g[i] in the normal equations and solving for the a;’s results in

a] = —1/6,@2 = 1/6,&3 =0.

The signal s[n] is the impulse response of an all-pole filter with two poles, i.e. second

order. Therefore, a;, = 0 for k > 2.

No, since the signal corresponds to the impulse response of a second order filter. The

higher order coefficients will all be 0.



