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Problem 5.1

(a),(b)

ǫ2 =
1

2π

∫ π

π
|Hd(e

jω) − H(ejω)|2dω

=
n=∞∑

n=−∞

(hd[n] − h[n])2

=
n=∞∑

n=−∞

(hd[n])2 −
n=M∑

n=0

(hd[n])2 +
n=M∑

n=0

(hd[n] − h[n])2

≥
n=∞∑

n=−∞

(hd[n])2 −
n=M∑

n=0

(hd[n])2

︸ ︷︷ ︸

constant w.r.t h[n]

Thus,
h[n] = hd[n] 0 ≤ n ≤ M

must hold to minimize ǫ2.

(c)

w[n] =

{
0 n < 0 or n > M
1 0 ≤ n ≤ M

Problem 5.2

(a)

Yc(s)

Xc(s)
=

A

s + c

⇒ sYc(s) + cYc(s) = AXc(s)

⇒ dyc(t)

dt
+ cyc(t) = Axc(t)



(b)

dyc(t)

dt

∣
∣
∣
∣
t=nT

= Axc(nT ) − cyc(nT )

yc(nT ) − yc((n − 1)T )

T
≈ Axc(nT ) − cyc(nT )

(c)

yc(nT ) − yc((n − 1)T )

T
≈ Axc(nT ) − cyc(nT )

y[n] − y[n − 1]

T
= Ax[n] − cy[n]

y[n] − y[n − 1] = TAx[n] − cTy[n]

y[n] + cTy[n] = TAx[n] + y[n − 1]

(1 + cT − z−1)Y (z) = TAX(z)

H(z) =
TA

1 + cT − z−1

=
A

1−z−1

T + c

(d)

Hc(s)|s= 1−z−1

T

=
A

s + c

∣
∣
∣
∣
s= 1−z−1

T

=
A

1−z−1

T + c

= H(z)

(e)

s =
1 − z−1

T

z =
1

1 − sT

For s = σ + jΩ:

z =
1

1 − σT − jΩT



For σ = 0, z = 1/(1 − jΩT ). As Ω ranges from −∞ to 0 to +∞, z ranges from j0− to 1
to j0+. For σ ≤ 0, |z| < 1, thus if the continuous time system is stable and has poles in
the left half plane, the discrete time approximation will be stable. The exact mapping is
shown in the figure below.

jΩ

σ

s-plane z-plane

The approximation is good only near the area where z = 1, i.e. ΩT ≈ 0. As T gets
smaller the approximation holds for larger Ω.

(f) In this case s = z−1
T ⇒ z = 1 + sT . Thus, for s = σ + jΩ, z = 1 + σT + jΩT . In this case

the left-half plane maps to the left of the line Re(z) = 1. Therefore, a stable continuous
time system might produce an unstable system with this approximation. Decreasing T
might make the system stable (since a larger area from the s-plane is compressed inside
the unit circle in the z-plane) but this is not guaranteed. As before, decreasing T improves
the approximation.

jΩ

σ

s-plane z-plane



Problem 5.3

We know that the frequency response of the form

Ae(e
jω) =

L∑

k=0

ak(cos(ω))k

can have at most L− 1 local maxima and minima in the open interval 0 < ω < π since it is
in the form of a polynomial of degree L.

If we include all the endpoints of the region

{0 ≤ |ω| ≤ ωp} ∪ {ωs ≤ |ω| ≤ π}
then we see we can have at most L + 3 alternation frequencies.

If the approximation does not decrease monotonically in transition band, and the transition
band has two of the local maxima and minima of Ae(e

jω), then only L − 3 can be in the
approximation bands. Even with all four endpoints of the approximation region as alternation
points, we can only have a maximum of L + 1 alternation points. This does not satisfy the
optimality condition of the Alternation Theorem which requires at least L + 2 alternation
points. It follows that the transition band cannot have more than two local minima or maxima
of Ae(e

jω) either.
If the transition only has one local maximum or minimum, the optimal approximation must

also have a local maximum or minimum at ωs or ωp, since the optimal filter response must have
alternations at ωs and ωp. If we add the four band edges to the remaining L − 3 maxima and
minima in the approximation bands, we get L + 1 which is again too low.

Therefore, the transition band cannot have any local minima or maxima and must be
monotonic.

Problem 5.4

For this filter N = 3 so the polynomial order L is L = N−1
2 = 1.

Note that h[n] must be a type-I FIR generalized linear phase filter, since it consists of three
samples, and H(ejω) 6= 0 for ω = 0. h[n] can therefore be written in the form

h[n] = aδ[n] + bδ[n − 1] + aδ[n − 2]

Taking the DTFT of both sides gives

H(ejω) = a + be−jω + ae−j2ω

= e−jω(aejω + b + ae−jω)

= e−jω(b + 2a cos(ω))

A(ejω) = b + 2a cos(ω)

The filter must have at least L+2 = 3 alternations, but no more than L+3 = 4 alternations
to satisfy the alternation theorem, and therefore be optimal in the minimax sense. Alternations



must occur at ωp and ωs. Three alternations can be obtained if ωp , ωs and π are alternation
frequencies such that A(ejω) undershoots at ω = π

3 , overshoots at ω = π
2 , and undershoots at

ω = π.
Let the error in the passband and stopband be δ. Then,

A(ejω)|ω=π

3

= 1 − δ = b + a

A(ejω)|ω=π

2

= δ = b

A(ejω)|ω=π = −δ = b − 2a

Solving this system of equations for a and b gives

a = b =
1

3

Thus, the optimal (in the minimax sense) causal 3-point lowpass filter with the desired
passband and stopband edge frequencies is

h[n] =
1

3
δ[n] +

1

3
δ[n − 1] +

1

3
δ[n − 2]

Problem 5.5

(a)

h1[n] = h[n] + δ2δ[n − n0]

H1(e
jω) = H(ejω) + δ2e

−jn0ω

= Ae(e
jω)e−jn0ω + δ2e

−jn0ω

= H3(e
jω)e−jn0ω

⇒ H3(e
jω) = Ae(e

jω) + δ2

Ae(e
jω) is real and greater than −δ2. Thus H3(e

jω) is real, nonnegative, and has zero
phase.

(b) H3(e
jω) has zero phase, and h3[n] (its inverse fourier transform) is real-valued. Thus, a

zero at zk implies there must also be zeros at z∗k, 1/zk, 1/z∗k. In addition, a zero on the
unit circle must be a double zero, since both the value of the frequency response and
its derivative are zero. Thus, we factor the zeros inside the unit circle to H2(z) and the
ones outside the unit circle to H2(1/z). The double zeros on the unit circle should be
factored one to each H2(z) and H2(1/z). Since H2(z) only has zeros inside the unit circle,
it is minimum phase (an exception is made here to allow zeros on the unit circle in the
definition of minimum phase systems). Also, since H2(z) has zeros in conjugate pairs,
h2[n] is real.



(c)

|Hmin(ejω)|2 =
H2(e

jω)H∗
2 (ejω)

a2

=
Ae(e

jω) + δ2

a2

⇒ |Hmin(ejω)| =

√

Ae(ejω) + δ2

a

Ae oscillates about 1 by ±δ1 in the passband. Therefore,

√
1 − δ1 + δ2

a
≤ |Hmin(ejω)| ≤

√
1 + δ1 + δ2

a

−δ′1 ≤ |Hmin(ejω)| − 1 ≤ +δ′1

⇒ δ′1 =

√
1 + δ1 + δ2 −

√
1 − δ1 + δ2

2a

Similarly, Ae oscillates about 0 by ±δ2 in the stopband. Therefore,

|Hmin(ejω)| ≤
√

2δ2

a

⇒ δ′2 =

√
2δ2

a

The spectral factorization reduces the order of the filter by half to M/2. Therefore,
hmin[n] has length M/2 + 1.

(d) The linear phase constraint ensures that the for every zero z, 1/z is also a zero. Thus we
can factor H3(z) to get H2(z). Otherwise spectral factorization is not possible. Similarly,
for Type II filters, n0 is not an integer, so this technique is not possible.

Problem 5.6

(a) For no aliasing, we need Mωs ≤ π. Therefore the maximum allowable M for no aliasing
is M = π/ωs.

(b) V (ejω): passband edge at ω = 0.9π/100, stopband edge at ω = π/100.

Y (ejω): passband edge at ω = 0.9π, stopband edge at ω = π.



0

1

ω0 0.9π/100 π/100 π

V(ejω)

∫∫

0

1/100

ω0 0.9π π

Y(ejω)

(c) V1(e
jω): passband edge at ω = 0.9π/100, stopband edge at ω = ωs.

W1(e
jω): passband edge at ω = 0.9π/2, stopband edge at ω = 50ωs.

V2(e
jω): passband edge at ω = 0.9π/2, stopband edge at ω = min(50ωs1, π/2).

Y (ejω): passband edge at ω = 0.9π, stopband edge at ω = π.

0

1

ω0 0.9π/100 ω
s1

π

V
1
(ejω)

∫∫

0

1/50

ω0 0.45π 50ω
s1

π

W
1
(ejω)



For the case where 50ωs1 = π
2 :

0

1/50

ω0 0.45π 0.5π π

V
2
(ejω)

0

1/100

ω0 0.9π π

Y(ejω)

(d) Since filter Hw(ejω) is 2π-periodic, we need to consider the stopband edge from the repli-
cation around ω = 2π. This edge can extend all the way to ω = ωp1 but no further:

50ωp1 ≤ 2π − 50ωs1

The maximum value is ωs1 = 3.1 π
100 .

0

1/50

ω0 0.45π 50ω
s1

π 2π−50ω
s1

1.55π 2π

W
1
(ejω)

(e) N ≈ 5068.7. Use N = 5069. In a direct implementation this would mean 5069 · 100
multiplications to compute each sample of y[n]. However, the direct implementation is
very inefficient, and we can take advantage of the fact that multipliers and downsamplers
commute, as illustrated in the figure below:

This way, the number of multiplications per sample of y[n] reduces to 5069. Also, taking
advantage of the symmetry of the impulse response, we can use a symmetric structure
as discussed in Section 6.5.3 in OSB, and the number of multiplications to compute
each sample of y[n] further goes down to 2535. Note that we did not use the polyphase
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Figure 5.6-1: Reducing the number of multiplications.

implementation of the low pass filter, we have just changed the order of multiplies and
the downsamplers. In the polyphase representation, the delays would be grouped in such
a way that they can be interchanged with the downsamplers as well.

(f) Using the value of ωs1 from part (d), the transition bandwidth is 2.2π/100. For H1(e
jω)

we need N1 ≈ 231.4. Note that if we had not extended the stopband edge ωs1 as far as
possible but used π/100 instead, then this filter alone would have required N1 ≈ 5068.7,
the same as part (e). Instead we can use N1 = 232. Using impulse response symmetry, we
need 116 multiplications for each sample of v1[n]. In a direct implementation this would
translate into 116 ·50 multiplications for each sample of w1[n] and 116 ·100 multiplications
to compute each sample of y[n] (contribution of H1 alone). However, changing the order
of multiplies and downsampling as in part (e), we will have 116 multiplications for each
sample of w1[n] and 116 · 2 for each sample of y[n] (the second downsampler still remains
on the path to y[n]).

N2 ≈ 102.3, use N2 = 103. Using impulse response symmetry, we need 52 multiplications
for each sample of v2[n]. In a direct form implementation that would translate into 2 · 52
multiplications for each sample of y[n] (contribution of H2 alone). Changing the order of
multiplies and downsamplers, we need only 52 multiplications for each sample of y[n].

Putting these together, the total is 2 · 116 + 52 = 284 multiplications to compute each
sample of y[n] in the steady state.

(g) N1 ≈ 250.1. Use N1 = 251. Using impulse response symmetry, and switching the order
of downsamplers and multiplies, we need 126 multiplications for each sample of v1[n] and
also for each sample of w1[n].

N2 ≈ 110.6. Use N2 = 111. Using impulse response symmetry, and switching the order
of downsamplers and multipliers, we need 56 multiplications for each sample of v2[n] and
also for each sample of y[n].

The total is 2 · 126 + 56 = 308 multiplications to compute each sample of y[n].



(h) No, we do not need to change the specification in the stop band.

Problem 5.7

(a) Ae(e
jω) has 7 alternations of the error. The approximation bands are of equal length and

the weighting function is unity in both bands, yet the stopband has one more alternation
than the passband. If it were an optimal filter, it would not. We can negate Ae(e

jω),
add 1 in the frequency domain, and shift it by π (by multiplying the impulse response by
(−1)n) to obtain a different lowpass filter that meets the same specifications. Since the
optimal approximation is unique, the one shown in the figure cannot be optimal.

(b) A polynomial of degree L can have at most L − 1 local minima or maxima in an open
interval. Since Ae(e

jω) has 3 local extrema in the interval from 0 < ω < π, we know
L ≥ 4.

Problem 5.8

(a)

Heff(jΩ) =
1

T
H(ejΩT )H0(jΩ)Hr(jΩ)

=
sin(ΩT/2)

ΩT/2
H(ejΩT )e−jΩT/2, |Ω| < π/T

(b) There is a 51/2=25.5 samples fractional delay due to the linear phase system and a T/2
delay due to h0(t) Therefore the total delay is 2.6ms.

(c) H(ejω) = e−jωM/2 cos(ω/2)P (cos ω) , where M = 51 and P (cos ω) =
L∑

k=0

ak(cos ω)k.

The phase term cannot be compensated for, but the desired frequency response should
compensate for the effects of H0(jΩ) in the passband. We also account for the presence
of the factor cos(ω/2) in H(ejω), so the function to be approximated by the polynomial
P (cos ω) is :

Hd(e
jω) =

{
ω/2

sin(ω/2) cos(ω/2) , |ω| ≤ 0.2π

0, 0.4π ≤ ω ≤ π

The overall response should be equiripple, but any ripple is multiplied by H0(jΩ) and the
cos(ω/2) term. Thus the weight should be scaled appropriately:

W (ω) =

{
sin(ω/2) cos(ω/2)

ω/2 , |ω| ≤ 0.2π
sin(ω/2) cos(ω/2)

ω/2 , 0.4π ≤ ω ≤ π



(d) Both Hd(e
jω) and W (ω) should be adjusted in the passband to compensate for the slope.

Note that we cannot compensate for the phase of Hr(jΩ):

Hd(e
jω) =

{
ω/2

sin(ω/2) cos(ω/2)|Hr(jω/T )| , |ω| ≤ 0.2π

0, 0.4π ≤ ω ≤ π

W (ω) =

{
sin(ω/2) cos(ω/2)|Hr(jω/T )|

ω/2 , |ω| ≤ 0.2π
sin(ω/2) cos(ω/2)|Hr(jω/T )|

ω/2 , 0.4π ≤ ω ≤ π


