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Problem 4.1 (OSB 6.10)

(a)

w[n] =
1

2
y[n] + x[n]

v[n] =
1

2
y[n] + 2x[n] + w[n − 1]

y[n] = x[n] + v[n − 1]

(b) We can take the z-transforms of the difference equations in part (a) and obtain the
system function algebraically. Alternatively, we can recognize the flow graph in OSB
Figure P6.10 - 1 as a transposed direct form II structure. Either way, we find:

H(z) =
Y (z)

X(z)
=

1 + 2z−1 + z−2

1 − 1
2z−1 − 1

2z−2

We can factor the numerator and the denominator into:

H(z) =

(
1 + z−1

) (
1 + z−1

)

(
1 + 1

2z−1
)
(1 − z−1)

The factorization suggests the following cascade form:
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(c) The system function has poles at z = −1
2 and z = 1. Since the second pole is on the unit

circle, the system is not stable.
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Problem 4.2 (OSB 6.11)

(a) H(z) can be expanded as:

H(z) =
z−1 − 6z−2 + 8z−3

1 − 1
2z−1

H(z) can then be translated into the following direct form II flow graph:
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(b) To get the transposed form, we reverse the arrows and exchange the input and the output.
The graph can then be redrawn as:
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Problem 4.3 (OSB 6.12)

OSB Figure P6.12-1 is redrawn below with some intermediate nodes labelled. We notice
that the upper centre node is 1

2y[n] and that the lowest node is also v[n].

x[n]

1
2y[n]

y[n]

v[n] w[n]
2

2−1

z−1

z−1
z−1

Writing the z-transform equations for v[n], w[n] and y[n]:

V (z) = z−1X(z) + 2W (z), (1a)

W (z) = z−1Y (z) + z−1V (z), (1b)

Y (z) = −2X(z) + 2V (z) + 2W (z). (1c)

Using equations (1a) and (1b), we express V (z) and W (z) in terms of X(z) and Y (z):

V (z) =
z−1X(z) + 2z−1Y (z)

1 − 2z−1
, (2a)

W (z) =
z−2X(z) + z−1Y (z)

1 − 2z−1
. (2b)

Substituting equations (2a) and (2b) into (1c), we arrive at the difference equation for the
system.

(1 − 8z−1)Y (z) = (−2 + 6z−1 + 2z−2)X(z),

y[n] − 8y[n − 1] = −2x[n] + 6x[n − 1] + 2x[n − 2].



4

Problem 4.4 (OSB 6.33)

(a) The system function for the flowgraph below is:

H(z) = d
cz−1 + 1

1 − bz−1
= cd

z−1 + 1
c

1 − bz−1

t

ttttt

y[n]

c

z−1

b

d

x[n]

¾ -

?

----

Comparing with H(z) as given,

b = 0.54, 1/c = −0.54, and cd = 1, so c = −1.852 and d = −0.54.

(b) H(z) has a zero at −c and a pole at b. The system is allpass when −c = 1/b∗. With
quantized coefficients b̂, ĉ, and d̂, b̂∗ĉ 6= −1 in general, so the resulting system would not
be allpass.

(c) The flowgraph is shown below.

z−1

z−1

t

ttttt

y[n]
.54

−1

x[n]

6
?

-

----

(d) Yes. There is only one “0.54” to quantize and its value determines the position of both
the pole and zero. The structure in part (c) ensures that the pole and zero are always
conjugate reciprocals regardless of the value of the multiplier.
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(e)

H(z) =

(
z−1 − a

1 − az−1

) (
z−1 − b

1 − bz−1

)

Cascading two sections as in (c) gives

−1

z−1

z−1

z−1

z−1
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The second delay in the first section and the first delay in the second section both output
w[n − 1]. We can turn the second section upside-down and reuse the second delay in the
first section.

z−1z−1

z−1

t t t t tt
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y[n]
b

−1

−1

a
x[n]
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(f) Yes, same reason as in part (d).
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Problem 4.5 (OSB 6.42)

(a) Every time we multiply a signal value by a coefficient (both represented by (B + 1) bits),
we must round the (2B + 1)-bit product to (B + 1) bits. Thus, a round-off noise source
should be injected into the network after every multiplication.

We assume as usual that each noise source is a white, WSS random process with average
power σ2

B and is uncorrelated with the input and all other noise sources. The linear noise
model for each system is drawn below:

y[n]

z−1

a

(3σ2)

b1

b0

z−1

y[n]

(2σ2)

z−1

b1
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y[n]

(2σ2)
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z−1

a
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(c)

(b)

(b) System (a) is clearly different from the other two in its placement of noise sources. In
system (c), all of the noise goes through the pole network. If we split the delay in system
(b) into two delays, we find:
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In system (b), the upper noise source sees the same pole network as in (c). The two lower
noise sources see the same pole network plus an additional delay (z−1). However, delays
do not affect the average power output. Hence systems (b) and (c) share the same output
noise power.

(c) The output noise power is equal to the autocorrelation φyy[m] evaluated at m = 0.
Denoting the impulse response seen by noise source i as hi[n] and using superposition,

φyy[m] =
3∑

i=1

σ2
Bδ[m] ∗ hi[m] ∗ hi[−m]

= σ2
B

3∑

i=1

∞∑

k=−∞

hi[k]hi[m + k]

φyy[0] = σ2
B

3∑

i=1

∞∑

k=−∞

h2
i [k].

For network (c) (and (b)), all noise sources are filtered by:

H(z) =
1

1 − az−1
,
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h[n] = anu[n].

φyy[0] = 3σ2
B

∞∑

n=0

(an)2

=
3σ2

B

1 − a2
,

For network (a), the noise source at the input is subjected to:

H(z) =
b0 + b1z

−1

1 − az−1
,

h[n] = b0δ[n] +

(

b0 +
b1

a

)

anu[n − 1].

The other two noise sources enter directly at the output.

φyy[0] = 2σ2
B + σ2

B

∞∑

n=0

h2[n]

= 2σ2
B + σ2

B











b2
0 +

(

b0 +
b1

a

)2 ∞∑

n=1

a2n

︸ ︷︷ ︸

a
2

1−a
2











= 2σ2
B + σ2

B

(

b2
0 +

(ab0 + b1)
2

1 − a2

)

= 2σ2
B + σ2

B

(
b2
0 + 2ab0b1 + b2

1

1 − a2

)

.

Problem 4.6

(a) The FIR lattice filter has three stages and is therefore third-order. The three k-parameters
or reflection coefficients are:

k1 = −
1

4
, k2 =

3

5
, k3 =

2

3
.

We start the recursion given by equations (8) in the lattice filter notes at p + 1 = 1 and

proceed until we have found the coefficients a
(3)
k , k = 1, 2, 3.



9

a
(1)
1 = k1 = −

1

4

a
(2)
1 = a

(1)
1 − k2a

(1)
1 = −

1

10

a
(2)
2 = k2 =

3

5

a
(3)
1 = a

(2)
1 − k3a

(2)
2 = −

1

2

a
(3)
2 = a

(2)
2 − k3a

(2)
1 =

2

3

a
(3)
3 = k3 =

2

3

H(z) = 1 +
1

2
z−1 −

2

3
z−2 −

2

3
z−3.

(b) Armed with the k-parameters from part (a), we refer to Figure 5 in the lattice filter notes
in drawing the lattice structure for the all-pole filter 1/H(z):

x[n] y[n]

z−1z−1z−1

2
3

−2
3

3
5

−3
5

−1
4

1
4

(Note: 1/H(z) is stable because all of the reflection coefficients have magnitudes less than
unity.)

Problem 4.7

The all-pole filter is fourth-order with coefficients:

a
(4)
1 = −

3

2
, a

(4)
2 = 1, a

(4)
3 = −

3

4
, a

(4)
4 = −2.

We know immediately that k4 = a
(4)
4 = −2. To find the remaining reflection coefficients, we

need to run the recursion in reverse and find the coefficients for successively lower order filters.
Letting M = 4 in equation (11) of the lattice filter notes,
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a
(3)
1 =

a
(4)
1 + k4a

(4)
3

1 − k2
4

= 0

a
(3)
2 =

a
(4)
2 + k4a

(4)
2

1 − k2
4

=
1

3

a
(3)
3 =

a
(4)
3 + k4a

(4)
1

1 − k2
4

= −
3

4

We identify k3 = a
(3)
3 = −3

4 and proceed to M = 3:

a
(2)
1 =

a
(3)
1 + k3a

(3)
2

1 − k2
3

= −
4

7

a
(2)
2 =

a
(3)
2 + k3a

(3)
1

1 − k2
3

=
16

21

Thus k2 = a
(2)
2 = 16

21 . Finally,

a
(1)
1 =

(1 + k2)a
(2)
1

1 − k2
2

=
a

(2)
1

1 − k2
= −

12

5
,

and k1 = −12
5 .

The lattice structure for H(z) is shown below:

x[n] y[n]

z−1z−1z−1z−1

−2

2

−3
4

3
4

16
21

−16
21

−12
5

12
5

Since |k1| > 1 and |k4| > 1, the all-pole filter cannot be stable.

Problem 4.8 (OSB 5.68)

For parts (a) and (b) we need the following Fourier transform property:

h[−n]
F

←→ H(e−jω)
F

←→ H∗(ejω) if h[n] is real
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(a) It is easier to work in the frequency domain in finding the overall impulse response h1[n].

G(ejω) = H(ejω)X(ejω)

R(ejω) = H(ejω)G(e−jω)

= H(ejω)H(e−jω)X(e−jω)

S(ejω) = R(e−jω) = H(e−jω)H(ejω)X(ejω)

H1(e
jω) = H(ejω)H(e−jω)

Hence,

h1[n] = h[n] ∗ h[−n]

Rewriting H1(e
jω) for real h[n]:

H1(e
jω) = H(ejω)H∗(ejω) = |H(ejω)|2

H1(e
jω) is real, non-negative and therefore zero-phase. Its magnitude is given by:

|H1(e
jω)| = |H(ejω)|2

(b)
G(ejω) = H(ejω)X(ejω)

R(ejω) = H(ejω)X(e−jω)

Y (ejω) = G(ejω) + R(e−jω)

= [H(ejω) + H(e−jω)]X(ejω)

H2(e
jω) = H(ejω) + H(e−jω)

Hence,

h2[n] = h[n] + h[−n]

Rewriting H2(e
jω) for real h[n]:

H2(e
jω) = H(ejω) + H∗(ejω)

= 2Re{H(ejω)}

= 2|H(ejω)| cos(∠H(ejω))



12

H2(e
jω) is real and is zero-phase as long as we allow sign changes in its amplitude. Its

magnitude is given by:

|H2(e
jω)| = 2|H(ejω)|| cos(∠H(ejω))|

(c)

|H1(e
jω)| = |H(ejω)|2

=

{

1, π
4 < |ω| < 3π

4

0 otherwise

|H2(e
jω)| = 2|H(ejω)|| cos(∠H(ejω))|

= 2|H(ejω)|| cos ω|

=

{

2| cos ω|, π
4 < |ω| < 3π

4

0 otherwise

|H1(e
jω)| and |H2(e

jω)| are sketched below. Since we wanted a band-pass filter with a
flat passband, H1(e

jω) is clearly more desirable.

|H1(e
jω)| |H2(e

jω)|

ωω

11

π
4

π
4

3π
4

3π
4

In general, method A (H1(e
jω)) is preferable in achieving a zero-phase characteristic. If

the desired magnitude response is |H1(e
jω)|, we could design h[n] to have a magnitude

response equal to
√

|H1(ejω)|. Using method B, H2(e
jω) has a magnitude response that

follows the real part of H(ejω), which very rarely corresponds to |H(ejω)| given an arbi-
trary phase characteristic. Supposing the desired magnitude response is |H2(e

jω)|, it is
difficult to design h[n] so that its frequency response has a desired real part as compared
to a desired magnitude.


