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Problem 3.1

No, it is not necessarily causal. As a counterexample consider the case of a non-integer
delay such as H(ejω) = e−j ω

2 , where τ(ω) = 1
2

for all ω but the corresponding impulse response
h[n] is certainly noncausal.

Problem 3.2

(a) For odd n, x[n] = 0 and Rxx[n, m] = 0. For even n and odd m, x[n + m] = 0 and again
Rxx[n, m] = 0. When both n and m are even: E [x[n]x[n+m]] = E [w[n

2
]w[n+m

2
]] = σ2

wδ[m].
x[n] is not WSS.

(b)

Ryy[n, m] = E [(
∞

∑

k′

1
=−∞

x[k′
1]h[n − k′

1])(
∞

∑

k′

2
=−∞

x[k′
2]h[n + m − k′

2])]

= E [(

∞
∑

k1=−∞

x[2k1]h[n − 2k1])(

∞
∑

k2=−∞

x[2k2]h[n + m − 2k2])]

=
∞

∑

k1=−∞

∞
∑

k2=−∞

h[n − 2k1]h[n + m − 2k2]E [x[2k2]x[2k1]]

=
∞

∑

k1=−∞

∞
∑

k2=−∞

h[n − 2k1]h[n + m − 2k2]σ
2
wδ[k2 − k1]

= σ2
w

∞
∑

k1=−∞

h[n − 2k1]h[n + m − 2k1]

= σ2
w

∞
∑

k=−∞

h[−2k]h[m − 2k]

Where we made the substitution k = k1 −
n
2

for the last step.

(c) E [d[n]] = E [y[2n]] = E [
∑∞

k=−∞ x[k]h[2n − k]] =
∑∞

k=−∞ E [x[k]]h[2n − k] = 0, so the mean
value of d[n] is independent of the time index n.



Since Rdd[n, m] = Ryy[2n, 2m] we need to examine Ryy[2n, 2m] for the case where both n
and m are even. Our answer in (b) does not depend on n, so d[n] will be wide sense station-
ary as long as the sum over k converges. It is enough to require that:

∑∞
k=−∞ |h[2k]|2 < ∞

Problem 3.3

OSB Problem 4.47

(a)

φxx[m] = E(x[n]x∗[n + m])

= E[xc(nT )x∗
c(nT + mT )]

= φxcxc
(mT )

(b) Since φxx[m] is samples of φxcxc
(τ);

Pxx(ejω) =
1

T

+∞
∑

k=−∞

Pxcxc

(

ω

T
+

2πk

T

)

(c) If Pxcxc
(Ω) = 0, for |Ω| ≥ π/T .

Problem 3.4

(a) For uniform distribution:

E(e[n]) =
∫ ∆/2

−∆/2
e 1

∆
de = 0

σ2
e = E(e2[n]) =

∫ ∆/2

−∆/2
e2 1

∆
de = ∆2

12

E(e[n]e[n + m]) = E(e2[n])δ[m] = ∆2

12
δ[m]

(b)
σ2

x/σ2
e = 12σ2

x/∆2

(c) For given filter, we have

h[n] =
∞

∑

k=0

a2kδ[n − 2k].



Thus,

H(ejω) = 1/(1 − a2e−2jω)

Φe(e
jω) =

∆2

12

Φyeye
(ejω) = Φe(e

jω)|H(ejω)|2

=
∆2

12|1 − a2e−2jω|2

=
∆2

12(1 + a4 − 2a2 cos 2ω)

=
∆2

12(1 − a2e−2jω)(1 − a2e2jω)

φyeye
[n] = h[n] ∗ h[−n]

=
∆2

12(1 − a4)
a2|n| for even n, 0 for odd n

σ2
ye

= φyeye[0] = σ2
e

∞
∑

k=−∞

h2[k] =
∆2

12(1 − a4)

The variance of x[n] is also scaled by the the same factor, so the SNR at the output is
still 12σ2

x/∆2.

Problem 3.5

(a) Since this is an LTI model, we can suppress e to find the contribution that x makes on y.
Writing node equations:

D1(z) = X(z) − Y (z)

D2(z) = H1(z)D1(z) − Y (z)

Y (z) = H2(z)D2(z)

These can be solved by substitution to yield:

Y (z)

X(z)
= z−1

Similarly, we can suppress x to find the contribution that e makes on y. Writing node
equations:

D2(z) = −H1(z)Y (z) − Y (z)

Y (z) = H2(z)D2(z) + E(z)



These can be solved to yield:
Y (z)

E(z)
=

(

1 − z−1
)2

Therefore,

Y (z) = z−1X(z) +
(

1 − z−1
)2

E(z)

The inverse transform is: y[n] = x[n − 1] + f [n], where f [n] = e[n] − 2e[n − 1] + e[n − 2].

(b)

Pff (ejω) = |Hey(e
jω)|2Pee(e

jω)

= σ2
e |(1 − e−jω)2|2

= σ2
e(1 − e−jω)2(1 − ejω)2

= σ2
e(2 − 2 cos(ω))2

= σ2
e

(

4 sin2
(ω

2

))2

= 16σ2
e sin4

(ω

2

)

σ2
f = φff [0] =

1

2π

∫ π

ω=−π
Pff (ejω)dω

=
1

2π

∫ π

ω=−π
16σ2

e sin4
(ω

2

)

dω

= 6σ2
e

Alternatively, we could have found the total noise power as follows:
The total noise power σ2

f is the autocorrelation of f [n] evaluated at 0:

σ2
f = E[(e[n] − 2e[n − 1] + e[n − 2])2]

= E[e2[n]] + E[(−2)2e2[n − 1]] + E[e2[n − 2]]

= 6σ2
e ,

where we have used linearity of expectations, and the fact that since e[n] is white, E[e[n]e[n −
k]] = 0 for k 6= 0.

ωπ−π

Pee

Pff



(c) Since X(ejω) is bandlimited between ±π/M , when y[n] is passed through H3(e
jω) all

of the information in X(ejω) is preserved, so w[n] = x[n − 1] + g[n], where g[n] is the
contribution from the noise. Since the noise power spectral density was shaped to be very
low for low frequencies, and high frequencies are cut off by H3(e

jω), the variance of g[n]
is small, as explored below.

(d)

σ2
g = φgg[0] =

1

2π

∫ π/M

ω=−π/M
Pgg(e

jω)dω

=
1

2π

∫ π/M

ω=−π/M
16σ2

e sin4
(ω

2

)

dω

≈
1

2π

∫ π/M

ω=−π/M
σ2

eω
4dω

=
σ2

eπ
4

5M5

(e) X(jΩ) must be bandlimited between ±π/(MT ). v[n] = xc((Mn − 1)T ) + q[n]. σ2
q = σ2

g .

The power spectrum of the noise at the output is Pqq(e
jω) = 1

M Pgg(e
j ω

M ) = (16/M)σ2
e sin4

(

ω
2M

)

.

The plot below uses an example of M = 4:

ωπ−π

Pee
qqP


