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Problem 2.1

(i) Real-valued impulse response:

Poles that aren’t real must be in complex conjugate pairs. Zeros that aren’t real must be
in complex conjugate pairs.

(ii) Finite impulse response:

All poles are at the origin. The ROC is the entire z-plane, except possibly z = 0.

(iii) h[n] = h[2α − n] where 2α is an integer:

Causality combined with the given symmetry property implies a finite-length h[n] that
can only be nonzero between time zero and time 2α. Thus we must have all poles at the
origin and at most 2α zeros. The z transform of h[2α − n] is z−2αH(1/z), so any zero of
H(z) at c 6= 0 must be paired with a zero at 1/c.

(iii) Minimum phase:

All poles and zeros are inside the unit circle (so that the inverse can be stable and causal).

(iv) All-pass:

Each pole is paired with a zero at the conjugate reciprocal location.

Problem 2.2

(a) False. As a counterexample, consider a filter described by

H(ejω) = 1 −
1

2
e−jω.

We know that H(z) can describe a causal, stable filter since its single pole is at z = 0. In
the vicinity of ω = 0, θ(ω) is increasing, so the group delay τ(ω) is negative.
The group delay evaluated at ω = 0 for this example can be determined using equation
(5.67) in OSB:

grd[1 − rejθe−jω] =
r2 − r cos(ω − θ)

|1 − rejθe−jω|2

and substituting r = 1

2
and θ = 0.



(b) False. Any zero-phase FIR filter may be delayed to become causal, and the resulting filter
will have the same phase as the delay block which was applied to it. One counterexample
is the causal, stable filter described by H(z) = 1 + 2z−1 + z−2.

(c) True. Note that
∫ π

0

τ(ω)dω = − θ(ω)|πω=0
= θ(0) − θ(π).

Setting this to 0, we realize that the assertion is true if having minimum phase and all
poles and zeros on the real axis implies

θ(0) = θ(π).

A minimum phase filter with poles and zeros on the real axis will have all poles and zeros
between -1 and 1. Factoring H(ejω) to find poles and zeros, we notice that for a given pole
term 1

1−ae−jω , the restriction −1 < a < 1 yields a phase contribution of 0 when ω = 0 or

ω = π. Likewise, a given zero term 1 − be−jω gives a phase contribution of 0 when ω = 0
or ω = π as long as −1 < b < 1. Since all poles and zeros of such a minimum phase filter
meet these criteria, θ(0) = θ(π) = 0 Therefore,

∫ π

0
τ(ω)dω = 0. (Note that

∫ π

0
τ(ω)dω = 0

for all real minimum phase filters, even if there are complex poles and zeros.)

Problem 2.3

The pole-zero diagram for the original system is as follows:
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(a) One way to carry out the minimum-phase and all-pass decomposition is as follows. In the
first stage, collect all zeros and poles that are inside the unit circle (zero at z = 3/4, pole



at z = 1/2) into the minimum-phase system. The other zeros and poles (zero at z = 2,
pole at z = ∞) go into the all-pass system.
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Next, we need to modify the first stage because we need to make sure that the all-pass
system really is all-pass, so add a pole at z = 1/2 and a zero at z = 0.

To preserve the original system, we can cancel these newcomers by placing a zero at
z = 1/2 and a pole at z = 0 in the minimum-phase system.
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Combining these, the minimum-phase system and all-pass systems are as shown below.
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In the minimum-phase system, the pole at z = 1/2 from the first stage has been cancelled
by the zero added in the second stage. Another way to look at that is that for this
particular system, we started with an all-pass pair (a pole at z = 1/2 and a zero at z = 2,
so we could have put these into the all-pass system initially.

The minimum-phase system function is:

HM1(z) =
z − 3

4

z

= 1 −
3

4
z−1

The all-pass system function is:

Hap(z) =
z(z − 2)

z − 1

2

=
1 − 2z−1

(

1 − 1

2
z−1

)

z−1

In constructing these systems, we didn’t come across any decision where we could have
chosen different routes. If we wanted to change one of the systems, we would have to add
the same number of poles and zeros to it, and these would have to be cancelled by zeros
and poles in the other system to preserve the original system.

We can’t add poles or zeros to the minimum phase system, because if we did, then when
we added the cancelling zeros or poles to the all-pass system, they would have to be



reflected outside the unit circle to keep the latter system all-pass. These items outside
the unit circle could not be cancelled in the minimum phase system. Finally, we cannot
change the all-pass system because if we added a zero and a pole, then to keep the system
all-pass, we would have to reflect a pole or zero to the other side of the unit circle, and
the items outside the unit circle could not be cancelled in the minimum-phase system.
Therefore, the decomposition is unique up to a scale factor.

(b) One way to carry out the minimum-phase and FIR linear-phase decomposition is as
follows. In the first stage, collect all zeros and poles that are inside the unit circle (zero
at z = 3/4, pole at z = 1/2) into the minimum-phase system. The other zeros and poles
(zero at z = 2, pole at z = ∞) go into the linear-phase system.
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Next, we need to modify the first stage because we need to make sure that the linear-phase
FIR system really is linear-phase FIR, so add a zero at z = 1/2. Since the system has to
have the same number of zeros and poles, we also need to add a pole. For an FIR system,
the pole must be at z = 0 or at z = ∞. We choose to add the pole at z = 0 because we
will have to cancel the pole by a zero in the minimum-phase system.

To preserve the original system, we can cancel these newcomers by placing a pole at
z = 1/2 and a zero at z = 0 in the minimum-phase system.
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Combining these, the minimum-phase system and FIR linear-phase systems are as shown
below.
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The minimum phase system function is:

HM2(z) =
z

(

z − 3

4

)

(

z − 1

2

)2

=
1 − 3

4
z−1

(

1 − 1

2
z−1

)2



The FIR generalized linear-phase system function is:

HL(z) =

(

z − 1

2

)

(z − 2)

z

= z

[(

1 −
1

2
z−1

)

(

1 − 2z−1
)

]

= z − 2.5 + z−1

Since this expression for HL(z) has even symmetry and an odd number of taps, we would
not necessarily expect a zero at z = 1 or at z = −1, and this is consistent with the pole-
zero diagram above. In constructing these systems, we didn’t come across any decisions
where we could have chosen different routes. Furthermore, we cannot change the minimum
phase system. If we tried adding a pole and zero to it, these would have to be cancelled
in the FIR linear phase system. But the zero in the linear-phase system would have
to be reflected outside the unit circle to maintain linear-phase, and this could not be
compensated for in the minimum-phase system. Similarly, we cannot add a pole and zero
to the FIR linear-phase system because if we did, then to keep it linear-phase, we would
have to reflect the zero outside the unit circle, and this could not be cancelled in the
minimum-phase system. Therefore, the decomposition is unique.

Problem 2.4

a. We desire |H(z)Hc(z)| = 1, where Hc(z) is stable and causal and H(z) is not minimum
phase. So,

|Hap(z)Hmin(z)Hc(z)| = 1

Since |Hap(z)| = 1, we want
|Hmin(z)Hc(z)| = 1

This means we have

Hc(z) =
1

Hmin(z)

which will be stable and causal since all the zeros of Hmin(z), which become the poles of
Hc(z), are inside the unit circle.

b. Since

Hc(z) =
1

Hmin(z)

We have
G(z) = Hap(z)



c.

H(z) = (1 − 0.8ej0.3πz−1)(1 − 0.8e−j0.3πz−1)(1 − 1.2ej0.7πz−1)(1 − 1.2e−j0.7πz−1)

Hmin(z) = (1.44)(1−0.8ej0.3πz−1)(1−0.8e−j0.3πz−1)(1−(5/6)ej0.7πz−1)(1−(5/6)e−j0.7πz−1)

Hc(z) =
1

(1.44)(1 − 0.8ej0.3πz−1)(1 − 0.8e−j0.3πz−1)(1 − (5/6)ej0.7πz−1)(1 − (5/6)e−j0.7πz−1)

G(z) = Hap(z) =
(z−1 − (5/6)e−j0.7π)(z−1 − (5/6)ej0.7π)

(1 − (5/6)ej0.7πz−1)(1 − (5/6)e−j0.7πz−1)
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Problem 2.5

(a) Using the all-pass principle, H(z) can be represented as a cascade of the minimum phase
term Hmin(z) and an all-pass term. We add a pole to remove the zero at z = zk, and
replace it with a zero at z = 1

z∗
k
:

H(z) = Hmin(z)
z−1 − z∗k
1 − zkz−1

= Q(z)(z−1 − z∗k)

(b) We know that:
H(z) = Q(z)(z−1 − z∗k) = Q(z)z−1 − Q(z)z∗k

Hmin(z) = Q(z)(1 − zkz
−1) = Q(z) − zkz

−1Q(z)

Taking the inverse z-transform:



h[n] = q[n − 1] − z∗kq[n]

hmin[n] = q[n] − zkq[n − 1]

(c) Using our answer from part (b):

ε =
m

∑

n=0

|hmin[n]|2 −
m

∑

n=0

|h[n]|2

=
m

∑

n=0

|q[n]|2 − zkq[n − 1]q∗[n] − z∗kq∗[n − 1]q[n] + |zk|
2|q[n − 1]|2

−
m

∑

n=0

|q[n − 1]|2 − zkq[n − 1]q∗[n] − z∗kq
∗[n − 1]q[n] + |zk|

2|q[n]|2

=
m

∑

n=0

(1 − |zk|
2)|q[n]|2 −

m
∑

n=0

(1 − |zk|
2)|q[n − 1]|2

= (1 − |zk|
2)|q[m]|2

(d) Since |zk| < 1, (1 − |zk|
2) is positive and therefore (1 − |zk|

2)|q[m]|2 > 0

Then
∑m

n=0
|hmin[n]|2 −

∑m
n=0

|h[n]|2 > 0 thus
∑m

n=0
|hmin[n]|2 >

∑m
n=0

|h[n]|2



Problem 2.6
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Problem 2.7

In both systems, the speech was filtered first so that the subsequent sampling results in no
aliasing. Therefore, going from s[n] to s1[n] basically requires changing the sampling rate by a
factor of 3kHz/5kHz = 3/5. This is done with the following system:

- 6 - --
?

s[n]
3

s1[n]
5

Digital LPF

ωc = π

5

gain = 3

Problem 2.8

Split H(ejω) into a lowpass and a delay.

H(ejω) = HLP (ejω)e−jω

HLP (ejω) =

{

1, |ω| < π
L

0, π
L

< |ω| ≤ π

- 6- C/D L
x[n]xc(t) - -

?
-- L

w[n] v[n] yc(t)
e−jωHLP (ejω)

Ideal Upsampler with gain
of 1 instead of L

Then we analyze the system as follows:

x[n] = xc(nT ) no aliasing assumed

w[n] =
1

L
xc(n

T

L
) rate change

v[n] = w[n − 1] =
1

L
xc

(

n
T

L
−

T

L

)

, delay at higher rate

y[n] = v[nL] =
1

L
xc

(

nT −
T

L

)



Problem 2.9

(a) Let’s rewrite System A as the cascade of two systems: an S/I (sample to impulse) converter
followed by a CT filter. The S/I converter turns the DT signal xd[n] into a CT impulse
train. If we allow the output of the S/I converter to be xs(t), then we have

xs(t) =
∞

∑

k=−∞

xd[k]δ(t − kT1)

Then, the output yc(t) of the CT filter is the convolution of xs(t) and h1(t), or

yc(t) = xs(t) ∗ h1(t).

We see that by combining the above two equations, we get the equation that describes
the behavior of System A.

xc(t) is bandlimited to Ωc = π · 10−3 rad/sec. Thus, we know that we can guarantee the
equality of xc(t) and yc(t) when T is sufficiently small (i.e. no aliasing from the first C/D
converter) and System A is an ideal D/C converter with the same sampling period.

We have no aliasing when ΩcT < π, or when T < 1000. System A is an ideal D/C
converter when h1(t) is an appropriate sinc function.

Thus, the following conditions work:

T = 500.

T1 = 500.

h1(t) =
sin(πt/T )

πt/T

(b) As we saw in the solution to part (a), our choices are not unique. We can choose any
T such that T < 1000. However, we see that we need T1 = T . We also have a choice
regarding h1(t). Since Xd(e

jω), or the Fourier transform of xd[n], is zero for

Tπ

1000
< |ω| < π,

Xs(jΩ), or the Fourier transform of xs(t), is zero for

πT

1000T1

=
π

1000
< |Ω| <

π

T1

.

Thus, H1(jΩ), or the Fourier transform of h1(t), can be anything in that frequency range
(and, by extension, any “copy” of this section of the frequency spectrum). If it is a
constant of T for |Ω| < π

1000
and zero for |Ω| > π

T
, then we have yc(t) = xc(t).



(c) Since we are interested only in the operations between xd[n] and yd[n], we need not worry
about aliasing from the first C/D converter in the whole system destroying our hopes for
achieving consistent resampling. Thus, there are no absolute restrictions on T and T1 like
we had in parts (a) and (b); they may, however, be related to each other.

In other words, what is going on between xd[n] and yd[n]? System A is taking each
sample of xd[n] and replacing it with h1(t) delayed by nT1 and scaled by xd[n] at that
point. Then, the C/D converter resamples the result.

Let’s consider what happens with xd[n] = δ[n − n0] for an integer n0. Then, yc(t) =
h1(t − n0T1). The sampled version of yc(t) is

yd[n] = yc(nT )

= h1(nT − n0T1).

A condition for consistent resampling is thus

h1(nT − n0T1) = δ[n − n0].

Because of the linearity of the mapping from xd[n] to yd[n], this is actually the only
condition that must be checked. To simplify the condition further, we have

evaluating at n = n0: 1 = h1(n(T − T1))

evaluating at n 6= n0: 0 = h1(nT − n0T1))

The case of practical significance is to have T = T1, in which case we find that h1(t)
should satisfying an interpolating condition: h1(0) = 1 and h1(t) = 0 for all multiples of
T . (It doesn’t matter what h1(t) is for other values of t.)


