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Problem 11.1 (OSB 11.3)

Note: The answers in the back of the book may not be correct in your version of the textbook.

We factor |X(ejω)|2 into:

|X(ejω)|2 =
5

4
− cos ω

=

(

1 −
1

2
e−jω

) (

1 −
1

2
ejω

)

= X(ejω)X∗(ejω)

As a first attempt, we take

X(ejω) = 1 −
1

2
e−jω

x[n] = δ[n] −
1

2
δ[n − 1]

which does not satisfy the constraints x[0] = 0 and x[1] > 0.

We can modify the above choice by cascading it with an all-pass system, which will not affect
the magnitude squared of the Fourier transform. Therefore we let

X(ejω) =

(

1 −
1

2
e−jω

)

e−jω

x[n] = δ[n − 1] −
1

2
δ[n − 2]

which does satisfy all of the constraints.

Another choice that works is to take the second factor in |X(ejω)|2 and cascade it with
(

−e−j2ω
)

:

X(ejω) =

(

1 −
1

2
ejω

)

(

−e−j2ω
)

=
1

2
e−jω − e−j2ω

x[n] =
1

2
δ[n − 1] − δ[n − 2]

Note that this second choice uses the zero at z = 2, the conjugate reciprocal of the zero at z = 1
2

in the first choice. Conjugate reciprocal zeroes yield the same Fourier transform magnitude (up
to a scaling).
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Problem 11.2

The inverse DTFT of jIm{Y (ejω)} is the odd part of y[n], denoted by yo[n].

yo[n] = DTFT−1[j3 sinω + j sin 3ω]

= DTFT−1

[

1

2

(

3ejω − 3e−jω + ej3ω − e−j3ω
)

]

=
1

2
(3δ[n + 1] − 3δ[n − 1] + δ[n + 3] − δ[n − 3])

Since y[n] is real and causal,

y[n] = 2yo[n]u[n] + y[0]δ[n]

= y[0]δ[n] − 3δ[n − 1] − δ[n − 3]

To determine y[0], we use the fact that Y (ejω)
∣

∣

∣

ω=π
= 3, i.e.,

Y (ejω)
∣

∣

∣

ω=π
=

∞
∑

n=−∞

y[n](−1)n

= y[0] + 3 + 1 = 3

y[0] = −1

Therefore,
y[n] = −δ[n] − 3δ[n − 1] − δ[n − 3]

Problem 11.3 (OSB 11.5)

In the frequency domain, the Hilbert transform is a 90◦ phase shifter:

H(ejω) =

{

−j, 0 < ω < π

j, −π < ω < 0

To find the Hilbert transform of each sequence, we will take the Fourier transform, multiply by
H(ejω), and take the inverse Fourier transform.

(a)

xr[n] = cos ω0n

Xr(e
jω) = πδ(ω − ω0) + πδ(ω + ω0), −π < ω ≤ π

Xi(e
jω) = H(ejω)Xr(e

jω)

= −jπδ(ω − ω0) + jπδ(ω + ω0), −π < ω ≤ π

xi[n] = sinω0n
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(b)

xr[n] = sinω0n

Xr(e
jω) =

π

j
δ(ω − ω0) −

π

j
δ(ω + ω0), −π < ω ≤ π

Xi(e
jω) = −πδ(ω − ω0) − πδ(ω + ω0), −π < ω ≤ π

xi[n] = − cos ω0n

(c) xr[n] is the impulse response of an ideal low-pass filter with cut-off frequency ωc:

xr[n] =
sin(ωcn)

πn

Xr(e
jω) =

{

1, |ω| < ωc

0, ωc < |ω| ≤ π

Xi(e
jω) =











−j, 0 < ω < ωc

j, −ωc < ω < 0

0, ωc < |ω| ≤ π

xi[n] =
1

2π

∫ 0

−ωc

jejωndω −
1

2π

∫ ωc

0
jejωndω

=
1 − cos(ωcn)

πn

Problem 11.4

The DTFT of y1[n] is given by

Y1(e
jω) = X(ejω)ejθ(ω), −π < ω < π

The DTFT of y2[n] is given by

Y2(e
jω) =

{

X(ejω)ej(θ(ω)−π/2), 0 < ω < π

X(ejω)ej(θ(ω)+π/2), −π < ω < 0

=

{

−jX(ejω)ejθ(ω), 0 < ω < π

jX(ejω)ejθ(ω), −π < ω < 0
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Since w[n] = y1[n] + jy2[n],

W (ejω) = Y1(e
jω) + jY2(e

jω)

=

{

X(ejω)ejθ(ω)(1 + 1), 0 < ω < π

X(ejω)ejθ(ω)(1 − 1), −π < ω < 0

=

{

2X(ejω)ejθ(ω), 0 < ω < π

0, −π < ω < 0

Therefore,
W (ejω) = 0, −π < ω < 0

and since |ejθ(ω)| = 1,
|W (ejω)| = 2|X(ejω)|, 0 < ω < π

Problem 11.5

We find the Fourier transform of h[n] and then take its complex logarithm,

h[n] = δ[n] + αδ[n − n0]

H(ejω) = 1 + αe−jωn0

Ĥ(ejω) = log
(

1 + αe−jωn0

)

The power series expansion for log(1 + x) with |x| < 1 is given by:

log(1 + x) =

∞
∑

k=1

(−1)k+1 xk

k

Letting x = αe−jωn0 and checking that |x| = |αe−jωn0 | = |α| < 1 as assumed, we obtain:

Ĥ(ejω) =
∞

∑

k=1

(−1)k+1 αk

k
e−jωkn0

The complex cepstrum ĥ[n] is found by taking the inverse Fourier transform of Ĥ(ejω) and
identifying e−jωkn0 ↔ δ[n − kn0]:

ĥ[n] =
∞

∑

k=1

(−1)k+1 αk

k
δ[n − kn0]

ĥ[n] is plotted in Figure 11.5-1:
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Figure 11.5-1: Complex cepstrum ĥ[n] for an echo system.

Problem 11.6

The sequence x[n] being minimum-phase means that x[n] is also causal, so that x[n] = 0, n < 0.
As stated in the problem, minimum phase implies that the complex cepstrum x̂[n] is causal,
i.e. x̂[n] = 0, n < 0. Thus the lower bound on the sum in equation (12.34) becomes k = 0
(because of x̂[k]), while the upper bound becomes k = n (because of x[n − k]).

x[n] =
n

∑

k=0

(

k

n

)

x̂[k]x[n − k], n > 0

Isolating the k = n term from the sum and solving for x̂[n],

x[n] = x̂[n]x[0] +
n−1
∑

k=0

(

k

n

)

x̂[k]x[n − k]

x̂[n] =
x[n]

x[0]
−

n−1
∑

k=0

(

k

n

)

x̂[k]
x[n − k]

x[0]
, n > 0

The equation above is a recursion formula for x̂[n], n > 0, while we know that x̂[n] = 0 for
n < 0:

x̂[n] =











0, n < 0

x[n]

x[0]
−

n−1
∑

k=0

(

k

n

)

x̂[k]
x[n − k]

x[0]
, n > 0

However, the recursion cannot determine x̂[0], so we must find it through some other means.
Recall the initial-value theorem for a causal sequence x[n] such that x[n] = 0 for n < 0:

x[0] = lim
z→∞

X(z)
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Since x̂[n] is also zero for n < 0,
x̂[0] = lim

z→∞

X̂(z)

But X̂(z) = log X(z), so we have

x̂[0] = lim
z→∞

log X(z)

= log
(

lim
z→∞

X(z)
)

= log (x[0])

Thus we can determine x̂[0] using only x[0], so the computation is causal.

Now suppose that x̂[n] is known for 0 ≤ n ≤ n0 − 1. Using the recursion, we are able to
calculate the next value x̂[n0] from the known past values of x̂[n] and from the values of x[n]
for 0 ≤ n ≤ n0. To start the recursion, we determine x̂[0], which is then used to determine x̂[1],
and so on. x̂[n] can therefore be recursively computed. Furthermore, the computation of x̂[n0]
for any n0 ≥ 0 only involves values of x[n] for 0 ≤ n ≤ n0, so the recursion can be implemented
in a causal manner.

Problem 11.7

(a) Similar to Problem 11.2, the inverse DTFT of Re{X(ejω)} is the even part xe[n] of x[n].

xe[n] = DTFT−1[1 + 3 cos ω + cos 3ω]

= δ[n] +
1

2
(3δ[n + 1] + 3δ[n − 1] + δ[n + 3] + δ[n − 3])

Since x[n] is real and causal, it can be uniquely determined from its even part xe[n]:

x[n] = 2xe[n]u[n] − xe[0]δ[n]

x[n] = δ[n] + 3δ[n − 1] + δ[n − 3]

(b) Let X(ejω) and X̂(ejω) denote the Fourier transforms of the sequence x[n] and its complex
cepstrum x̂[n]. X(ejω) and X̂(ejω) are related by:

X̂(ejω) = log |X(ejω)| + j arg
[

X(ejω)
]

where arg
[

X(ejω)
]

denotes the continuous unwrapped phase.

If x1[n] = x[−n], then X1(e
jω) = X(e−jω), and

X̂1(e
jω) = log |X1(e

jω)| + j arg
[

X1(e
jω)

]

= log |X(e−jω)| + j arg
[

X(e−jω)
]

= X̂(e−jω)
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Therefore x̂1[n] = x̂[−n] also. Statement 1 is true.

If x[n] is real, then the Fourier transform magnitude |X(ejω)| is an even function of ω,
while the unwrapped phase is an odd function of ω. The real part of X̂(ejω), which is
the logarithm of |X(ejω)|, must be an even function, while the imaginary part of X̂(ejω)
is equal to arg

[

X(ejω)
]

and must be an odd function. Therefore X̂(ejω) is conjugate
symmetric and the complex cepstrum x̂[n] is real.

Statement 2 is also true.


