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Problem 11.1 (OSB 11.3)

Note: The answers in the back of the book may not be correct in your version of the textbook.

We factor | X (e/“)|? into:

, 5
| X (e79)]? = 4~ cosw
=|1- le_j“’ 1-— lejw
2 2
= X (e99) X*(e/*)
As a first attempt, we take

A 1 .

X(¥)=1- 56_]“’

ﬂﬂ:ﬂﬂ—%ﬂn—ﬂ

which does not satisfy the constraints z[0] = 0 and z[1] > 0.

We can modify the above choice by cascading it with an all-pass system, which will not affect
the magnitude squared of the Fourier transform. Therefore we let

X (%) = (1 - %e‘j“> e I
efn] = 3ln — 1] — 23ln 2]

which does satisfy all of the constraints.

Another choice that works is to take the second factor in | X (e/*)|? and cascade it with (—e™7%*):

X (%) = <1 - %ej”> (—e %) = %eij“’ — eI

1
x[n] = 55[71 — 1] = d[n — 2]
Note that this second choice uses the zero at z = 2, the conjugate reciprocal of the zero at z = %

in the first choice. Conjugate reciprocal zeroes yield the same Fourier transform magnitude (up
to a scaling).



Problem 11.2
The inverse DTFT of jIm{Y (e/*)} is the odd part of y[n], denoted by y,[n].

Yo[n] = DTFT![j3sinw + j sin 3w]
=DTFT! % (3e? — 3e™I¥ 4 /% — €773
- % (38[ + 1] — 36[n — 1] + 6[n + 3] — 8[n — 3])
Since y[n] is real and causal,

yln] = 2y,[nJuln] + y[04[n]
= y[0]d[n] — 30[n — 1] — §[n — 3]

To determine y[0], we use the fact that Y(ej‘“)‘ =3, le,
V()| = 3yl
—y[0]+3+1=3
yl0] = -1
Therefore,

Problem 11.3 (OSB 11.5)
In the frequency domain, the Hilbert transform is a 90° phase shifter:

H(ejw): -—j, O<w<m
7, —T<w<0

To find the Hilbert transform of each sequence, we will take the Fourier transform, multiply by
H (&%), and take the inverse Fourier transform.

(a)

xp[n] = coswon
X, (e7) = w6(w —wp) + 16(w +wp), —T<w<w
Xi(e) = H(e) X, (e7*)
= —jmd(w —wp) + jré(w + wp), —-T<w<T

xi[n] = sinwon



X;(e?) = —md(w — wp) — W (w +wp), —T<w<T

x;i[n] = — coswon

(¢) z,[n] is the impulse response of an ideal low-pass filter with cut-off frequency w.:

sofi] = siniru:n)

Xr(ejw) — 1a ‘w| < We
0, we<lw| <7

—7, 0<w < we
X&) =4j, —we<w<0
0, we < |w| <

1 0 . jwn 1 e . _jwn
:cz[n]:% je dw—% ; jer"dw

—We

1 —cos(wen)

™

Problem 11.4
The DTFT of y;[n] is given by

Yi(e) = X ()@, —r<w<T
The DTFT of yo[n] is given by

e X (ed)edO0W=7/2) < w<n
2(6 ) - X(ejw)ej(e(w)‘i‘ﬂ'/m’ T <w<0

{—jX(ejw)eje(“), O<w<m

JX(e7)e?@) _p<w<0



Since w[n] = yi[n] + jy2[n],
W(e?) = Yi(e?) + jYa(e™*)

X)) (1+1), O<w<T
X ()@ (1 1), —r<w<0

B 2X (7))@ 0 <w <
B 0, T <w<O0

Therefore, A
W(e*) =0, —m<w<0

and since /)| =1, ‘ A
W ()| =21 X)), O<w<m

Problem 11.5

We find the Fourier transform of h[n] and then take its complex logarithm,

hin] = é[n] + ad[n — ng]
H(e?%) =14 ae 7m0
H(e'*) = log (1+ ae_jwno)
The power series expansion for log(1 + x) with |z| < 1 is given by:
> ok
log(1 + x) Z k“
k=1
Letting 2 = ae™7*™ and checking that |x| = |ae /™| = |a| < 1 as assumed, we obtain:
= ¥
ejw Z +1 —jwk:no
k=1
The complex cepstrum A[n] is found by taking the inverse Fourier transform of H(e/®) and
identifying e =7“*m0 « §[n — kno):
> ¥
=2 (=1 dn — knl

k=1

h[n] is plotted in Figure 11.5-1:



U]
h[n]
a
3
a
—_— 5
3 a
5
2nQ 4n, ]
0o N 3 [ B "
4
o
a’ 4
2

Figure 11.5-1: Complex cepstrum ﬁ[n] for an echo system.

Problem 11.6

The sequence x[n] being minimum-phase means that z[n] is also causal, so that z[n] =0, n < 0.
As stated in the problem, minimum phase implies that the complex cepstrum Z[n| is causal,
ie. Z[n] =0, n < 0. Thus the lower bound on the sum in equation (12.34) becomes k = 0
(because of Z[k]), while the upper bound becomes k = n (because of z[n — k).

The equation above is a recursion formula for Z[n], n > 0, while we know that Z[n] = 0 for
n < 0:

0, n <0
i) = aln] N~ (k) peln=k
[0 kzo<n> M Y

However, the recursion cannot determine z[0], so we must find it through some other means.
Recall the initial-value theorem for a causal sequence z[n] such that z[n] = 0 for n < 0:

z[0] = lim X(2)

Z—00



Since Z[n] is also zero for n < 0,
z[0] = lim X(2)

Z—00

But X (z) = log X(z), so we have

z[0] = lim log X (z)

Z—00

= log ( lim X(z))

zZ—0Q
= log (z[0])
Thus we can determine #[0] using only z[0], so the computation is causal.

Now suppose that Z[n] is known for 0 < n < ng — 1. Using the recursion, we are able to
calculate the next value Z[ng] from the known past values of Z[n] and from the values of z[n]
for 0 < n < ng. To start the recursion, we determine £[0], which is then used to determine Z[1],
and so on. #[n| can therefore be recursively computed. Furthermore, the computation of #[ng]
for any ng > 0 only involves values of z[n] for 0 < n < ng, so the recursion can be implemented
in a causal manner.

Problem 11.7

(a) Similar to Problem 11.2, the inverse DTFT of Re{X (e/“)} is the even part x.[n] of z[n].
ze[n] = DTFT ™1 + 3 cosw + cos 3w]
=d[n] + % (30[n+ 1] +3d[n — 1] + 6[n + 3] + d[n — 3])
Since x[n] is real and causal, it can be uniquely determined from its even part x.[n]:

[n] = 2xe[nfuln] — e [0]6[n]
[n] = d[n] + 3d[n — 1] + 6[n — 3]

x
x

(b) Let X (/%) and X (&%) denote the Fourier transforms of the sequence x[n] and its complex
cepstrum #[n]. X (e/“) and X (e/*) are related by:

X(e) =log| X (e/)] + j arg [X (e™*)]

where arg [X (ej“’)] denotes the continuous unwrapped phase.
If 21[n] = x[—n], then X;(e/*) = X (e™/*), and
X1(e) = log [ X1 ()] + j arg [X: (e/*)]
= log | X (e77¥)| + j arg [X (e77¥)]
= X(e™¥)



Therefore &1[n] = Z[—n] also. Statement 1 is true.

If x[n] is real, then the Fourier transform magnitude | X (e/“)| is an even function of w,
while the unwrapped phase is an odd function of w. The real part of X (e’“), which is
the logarithm of | X (e7*)|, must be an even function, while the imaginary part of X (e/*)
is equal to arg [X(e7)] and must be an odd function. Therefore X (e*) is conjugate
symmetric and the complex cepstrum z[n] is real.

Statement 2 is also true.



