Introduction to Simulation - Lectures 17, 18

Molecular Dynamics




Molecular Dynamics

Molecular dynamics is a technique for computing the equilibrium and

non-equilibrium properties of classical* many-body systems.

References:

1) Computer Simulation of Liquids, M.P. Allen & D.J. Tildesley,
Clarendon, Oxford, 1987.

2) Understanding Molecular Simulation: From Algorithms to
Applications, D. Frenkel and B. Smit, Academic Press, 1997.

3) Moldy manual




Moldy

* A free and easy to use molecular dynamics simulation package can be found
at the CCP5 program library (http://www.ccpS.ac.uk/librar.shtml), under the
name Moldy. At this site a variety of very useful information as well as
molecular simulation tools can be found.

* Moldy is easy to use and comes with a very well written manual which can
help as a reference. I expect the homework assignments to be completed using
Moldy.




Why Do We Need Molecular Dynamics?

Similar to real experiments.

1. Allows us to study and understand material behavior so that we can model it.
2.  Tells us what the answer is when we do not have models.
Example: Diffusion equation
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 This equation cannot be solved unless a relation between n and F' 1s provided.
« Experiments or consideration of molecular behavior shows that
under a variety of conditions p
n
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diffusion equation!




Breakdown of linear gradient constitutive law [z

ox

High Knudsen number flows (gases)

* Kn 1s defined as the ratio of the molecular mean-free path to a characteristic
lengthscale

» The molecular mean-free path 1s the average distance traveled by molecules
between collisions

* Collisions tend to restore equilibrium

* When Kn « 1 particle motion is diffusive (near equilibrium)

 When Kn » 1 particle motion is ballistic (far from equilibrium)

* 0.1 <Kn < 10 physics is transitional (hard to model)




Example:  Re-entry vehicle acrobraking maneuver
in the upper atmosphere

* In the upper atmosphere density is low (collision rate is low)
* Long mean-free path
* High Knudsen number flows typical
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Brief Intro to Statistical Mechanics

Statistical mechanics provides the theoretical connection between the
microscopic description of matter (e.g. positions and velocities of molecules)
and the macroscopic description which uses observables such as pressure,

density, temperature ...

This 1s achieved through a statistical approach and the concept of an ensemble
average. An ensemble is a collection of a large number of identical systems
(M) evolving in time under the same conditions but different
microscopic initial conditions.

Let P(F,') be the number of such systems in state

Then p(Fl-) can be interpreted as the probability of finding an ensemble
member in state i.




« Macroscopic properties (observables) are then calculated as weighted

R (A =~ p(T;)A(T;)
|
or in the continuous limit <A> = | p(F)A(F)dF .
* One of the fundamental results of statistical mechanics is that the probability

of a state of a system with energy E in equilibrium at a fixed temperature 7 is
governed by

p(Ie) = exp(— kET)

where k 1s Boltzmann’s constant.

» For non-equilibrium systems solving a problem reduces to the task of calculating
p).
* Molecular methods are similar to experiments where rather than solving for p(I')

we measure directly.




implies that given an ensemble of systems, any observable <14>
can be measured by averaging the value of this observable over all
systems.

However, in real life we do not use a large number of systems to do
experiments. We usually observe one system over some period of time.

This 1s because we use the ergodic hypothesis:




A Simplified MD Program Structure

e Initialize:

* Loop in timestep increments until = ¢, ,

 Output results




Equations of Motion

Newton’s equations

0(7’1»7”2 ...?N) = Potential energy of the system
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) = three body interaction (expensive to calculate)




For this reason, typically

where U, includes some of the effects of the three body interactions.




The Lennard-Jones Potential

One of the most simple potentials used 1s the Lennard-Jones.
Typically used to simulate simple liquids and solids.

CE 48[(

¢ 1s the well depth [energy]

G is the interaction lengthscale

 Very repulsive for

* Potential minimum at

» Weak attraction (~ 1/ r6) for »>20




The Lennard-Jones potential (U) and force (F) as a function of separation (r)
(e=0c=1)




Reduced Units

« What is the evaporation temperature of a Lennard-Jones liquid?

« What is an appropriate timestep for integration of the equations
of motion of Lennard-Jones particles?

« What is the density of a liquid/gas made up of Lennard-Jones
molecules?




Number density
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* In these units, numbers have physical significance.

» Results valid for all Lennard-Jones molecules.

* Easier to spot errors: (102 must be wrong!)



Integration Algorithms

An integration algorithm should
a) Be fast, require little memory
Permit the use of a long timestep
Duplicate the classical trajectory as closely as possible

Satisfy conservation of momentum and energy and be
time-reversible

Simple and easy to program




Discussion of Integration Algorithms

Not very important, by far the most expensive part of simulation is in
calculating the forces

Very important because for a given total simulation time the longer the
timestep the less the number of force evaluation calls

Not very mmportant because no numerical algorithm will provide the
exact solution for long time (nearby trajectories deviate exponentially in
time). Recall that MD is a method for obtaining time averages over “all
initial conditions” under prescribed macroscopic constraints. Thus
conserving momentum and energy is more important.

Very important (see C)

Important, no need for complexity when no speed gains are possible.




The Verlet Algorithm

One of the most popular methods for at least the first few decades of MD.
71+ 62)=27(¢) - H{1— 1)+ 67 a(«

1)  Very compact and simple to program

2)  Excellent energy conservation properties (helped by time-reversibility)

21




3) Time reversible 7/(1+ 5/‘) o /7(1‘— 51‘)

4)  Local error 0(51‘4)

77+ 6¢)— 71— 61)

Awkward handling of velocities

a) Need solution before getting

b) Error for velocities 0(51‘2)

May be sensitive to truncation error because in
71+ 62)=27(¢) - #{1— 1)+ 67 4(¢)

a small number i1s added to the difference of two large numbers.




Improvements To The Verlet Algorithm

44(¢)- a(z-5¢)

71+ 62) = #(2)+ 8t7( 1)+ 67
24(1+ 8¢)+5a( 1) - a6t

P\ 1+6¢)= P2)+ 6t 6

 Coordinates equivalent to Verlet algorithm

« J4 more accurate than Verlet




Predictor Corrector Algorithms

Predict positions, velocities, accelerations at z + o.

Evaluate accelerations from new positions and velocities (if forces are
velocity dependent.

Correct the predicted positions, velocities, accelerations using the new
accelerations.

Go to (a).

Although these methods can be very accurate, the nature of MD simulations is
not well suited to them. The reason is that any prediction and correction which
does not take into account the motion of the neighbors is unreliable.




The concept of such a method 1s demonstrated here by the modified Beeman
algorithm that handles velocity dependent forces (discussed later).

o) #{e+60) = () + 07 ()+ 2 [al ) a1 80

b) 77(r+687)=F(1)+ % (3a(7)-a(z- &7)|
c) a(z+6t)= %1 F{?(1‘+ &), 777+ 61)}
&) 7 (r+8) = P(0)+ ¥ [2ar+ 80)+ 52 )~ (+- &)

e) Replace /“with 7 and go to c.

If there are no velocity dependent forces this reduces to the Beeman method
discussed above.




Periodic Boundary Conditions

« Periodic boundary conditions are
very popular: Reduce surface
effects

Today’s computers can easily treat N > 1000 so artifacts from small systems
with periodic boundary conditions are limited.

Equilibrium properties unaffected.

Long wavelengths not possible.

In today’s implementations, particle interacts with “closest” images of other

molecules.
26




Evaluating Macroscopic Quantities

* Macroscopic quantities (observables) are defined as appropriate averages of
microscopic quantities.
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« If the system is not in equilibrium, these properties can be defined as a
function of space and time by averaging over extents (space, time) over
which change is small.




Starting The Simulation Up

Need initial conditions for positions and velocities of all molecules in the
system.

Typically initial density, temperature, number of particles known.

Because of the highly non-linear particle interaction starting at completely
arbitrary states 1s almost never successful.

Velocity degrees of freedom can be safely initialized using the equilibrium
distribution

Az exp(_gj




because the additive nature of the kinetic energy

leads to independent probability distributions for each particle velocity.

Liquids are typically started in




Equilibration

Because systems are typically 1nitialized in the incorrect state, potential energy
is usually either converted into thermal energy or thermal energy 1s consumed

as the system equilibrates. In order to stop the temperature from drifting, one
of the following methods is used:

is the instantaneous temperature.

This is the simplest and most crude way of controlling the temperature
of the simulation.




2) Thermostat. A thermostat is a method to keep the temperature
constant by introducing it as a constraint into the equations of motion.
Thermostats will be described under “Constrained Dynamics.”




Long Range Forces, Cutoffs,
And Neighbor Lists

 Lennard-Jones potential decays as 7% which is reasonably fast.
« However, the number of neighbors interacting with a particle grows as r 3.
* Interaction is thus cut off at some distance 7, to limit computational cost.

* Most sensitive quantitites (surface tension) to the long range forces usually
calculated with 7, approximately 100.

* Typical calculations for hydrodynamics use r, approximately 2.50.

* Electrostatic interactions require special methods
(Multiple expansions, Ewald sums) - See Moldy manual




 Although system behavior (properties: equation of state, transport
coefficients, latent heat, elastic constants) are affected by r., the new
ones can be measured, if required.

 The simplest cut-off approach is a truncation

Not favored because U”(r) is discontinuous. Does not conserve energy.

» This 1s fixed by the truncated and shifted potential




* Even with a small cut-off value the calculation cost is proportional to N 2
because of the need to examine all pair separations.

* Cost reduced by “neighbor lists”




Verlet Neighbor Lists

* Keep an expanded neighbor list (//g > /;,)

so that neighbor pairs need not be calculated every timestep

° chosen such that need to test every 10-20 timesteps

e Good for N < 1000

(too much storage required)




Cell-index Method

 Divide simulation into subcells in each direction (here ).

 Search only sub-cells within cut-off (conservative)

112/3]4]5

678910
1112 13 14 |15
21221232425




* In two dimensions cost is 4.5 NN, where

£

—2
/77

: 1
N = instead of > N(/V — 1).

* In three dimensions cost is 13.5 NN, instead of - j\/( N— 1),
2

(With N, appropriately redefined)




Constraint Methods

Newtonian molecular dynamics conserves system energy, volume and
number of particles.

Engineering-physical systems typically operate at constant pressure,
temperature and exchange mass (i.e. they are open).

Methods to simulate these have been proposed®.




Constant Temperature Simulations

Newton’s equations conserve energy and temperature is a variable.

In most calculations of practical interest we would like to prescribe temperature
(in reality, reservoirs, such as the atmosphere, interact with systems of interest
and keep temperature constant).

Similar considerations apply for pressure. We would like to perform constant
pressure calculations with variable system volume.

Three main types of approaches




Equations of motion

g _ g
/ 1s a dynamical variable and is given by [ Z(T — 2y )

g =number of degrees of freedom
O = reservoir mass (adjustable parameter-controls equilibration dynamics)

This method 1s known as the Nosé-Hoover thermostat.




e A is a Lagrange multiplier (not a dynamical variable).

* A discussion of these and constant pressure methods can be found
in the Moldy Manual.
* Note the “velocity-dependent forces.”




Homework Discussion

Use (and modify) control file . You can run short familiarization
runs with this file.

calls the system specification file. Increase the number
of particles to 1000 (reduce small system effects and noise).

Note that density in 1s in units equivalent to
g/cm?® (= 1000 Kg/m?).
Reduce noise by increasing number of particles and/or averaging interval

( ).

Make sure that temperature does not drift significantly from the original
temperature. You may want to rescale ( ) more often and stop
rescaling ( ) later.

By setting you disable the radial distribution function
calculation which makes the output file more readable.




Sample control file

it

# Sample control file. Different from the one provided with code.
it

sys-spec-file=argon.in
density=1.335
temperature=120
scale-interval=2
scale-end=5000
nsteps=25000
print-interval=500
roll-interval=500
begin-average=5001
average-interval=10000
step=0.01

subcell=2
strict-cutoff=1
cutoff=10.2
begin-rdf=2501
rdf-interval=0
rdf-out=2500




