Introduction to Simulation - Lecture 11

Newton-Method Case Study – Simulating An Image Smoother

Jacob White

Thanks to Deepak Ramaswamy, Andrew Lumsdaine, Jaime Peraire, Michal Rewienski, and Karen Veroy

Outline

- Image Segmentation Example
 - Large nonlinear system of equations
 - Formulation? Continuation? Linear Solver?
- Newton Iterative Methods
 - Accuracy Theorem
 - Matrix-free idea
- Gershgorin Circle Theorem
 - Lends insight on iterative method convergence
- Arc-Length Continuation

Simple Smoother

Circuit Diagram

Smoothed Output

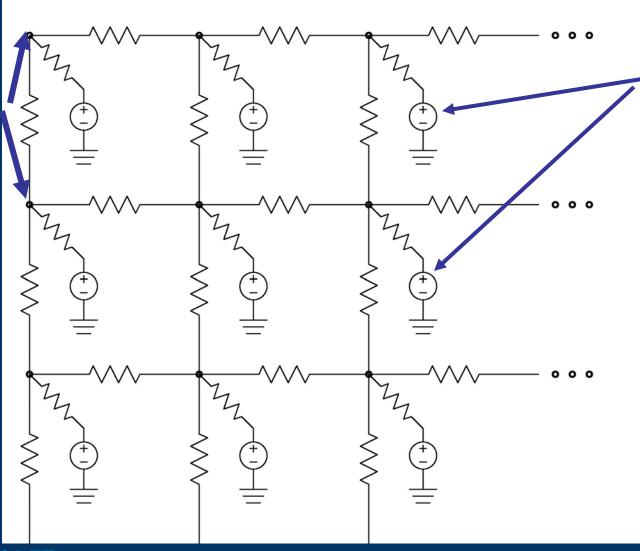
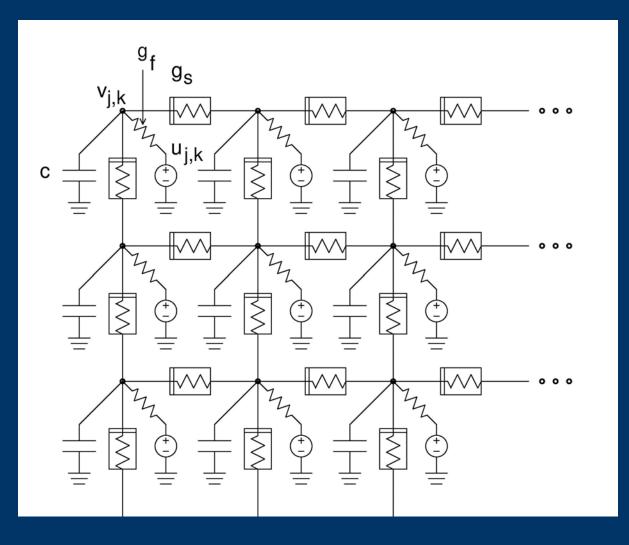


Image Input

SMA-HPC ©2003 MIT

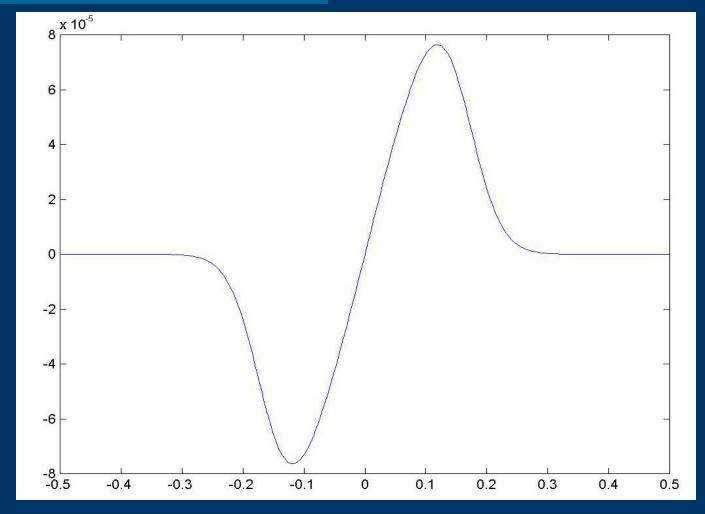
Circuit Diagram



Nonlinear Resistor Constitutive Equation

$$i(v) = \frac{\alpha v}{1 + e^{-\beta(\gamma - \alpha v^2)}}$$

Nonlinear Resistor Constitutive Equation

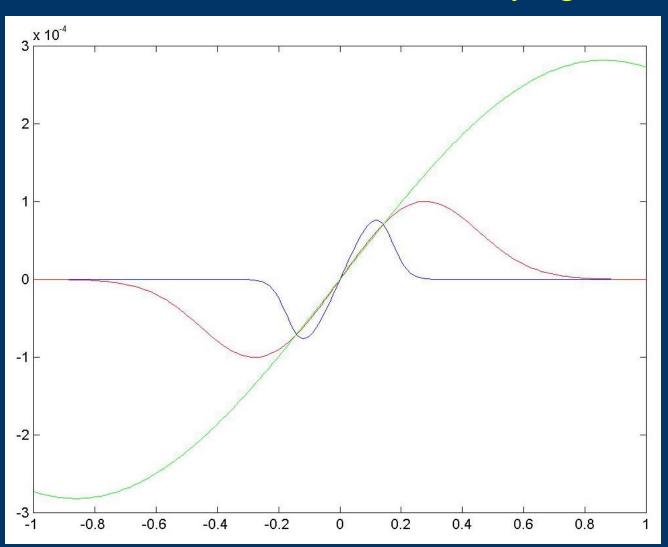


Voltage

Current

Nonlinear Resistor Constitutive Equation

Varying Beta



Questions

- What Equation Formulation?
 - Node-Branch or Nodal?
- What Newton Method?
 - Standard, Damped, or Continuation?
 - What kind of Continuation?
- What Linear Solver?
 - Sparse Gaussian Elimination or Krylov?
 - Will Krylov converge rapidly?
 - How will formulation, Newton choices interact?

Newton-Iterative Method

Basic Algorithm

Nested Iteration

$$x^{0} = \text{Initial Guess}, k = 0$$
Repeat {
$$\text{Compute } F\left(x^{k}\right), J_{F}\left(x^{k}\right)$$
Solve (Using GCR)
$$J_{F}\left(x^{k}\right) \Delta x^{k+1} = -F\left(x^{k}\right) \text{ for } \Delta x^{k+1}$$

$$x^{k+1} = x^{k} + \Delta x^{k+1}$$

$$k = k+1$$
} Until $\left\|\Delta x^{k+1}\right\|$, $\left\|F\left(x^{k+1}\right)\right\|$ small enough

How Accurately Should We Solve with GCR?

Newton-Iterative Method

Basic Algorithm

Solve Accuracy Required

After *l* steps of GCR

$$J_F(x^k)$$
 $\Delta x^{k+1,l} = -F(x^k) + \underbrace{r^{k,l}}_{GCR}$
Newton delta from lessidual lessidual

$$\overline{a}$$
) $||J_F^{-1}(x^k)|| \le \beta$ (Inverse is bounded)

c)
$$||r^{k,l}|| \le C ||F(x^k)||^2$$
 (More accurate near convergence)

Then

The Newton-Iterative Method Converges Quadratically

Newton-Iterative Method

Basic Algorithm

Convergence Proof

By definition of the Newton-Iterative Method

$$x^{k+1} = x^k - J_F(x^k)^{-1} \left(F(x^k) + r^{k,l}\right)$$

Approximate Newton Direction

Multidimensional Mean Value Lemma

$$||F(x)-F(y)-J_F(y)(x-y)|| \le \frac{\ell}{2}||x-y||^2$$

Combining

$$\left\|F\left(x^{k+1}\right) - F\left(x^{k}\right) + J_{F}\left(x^{k}\right) \left[J_{F}\left(x^{k}\right)^{-1}\left(F\left(x^{k}\right) + r^{k,l}\right)\right]\right\| \leq \frac{\ell}{2} \left\|J_{F}\left(x^{k}\right)^{-1}\left(F\left(x^{k}\right) + r^{k,l}\right)\right\|^{2}$$

Newton-Iterative Method

Basic Algorithm

Convergence Proof Cont.

Canceling the Jacobian and its inverse on the previous slide

$$\left\| F(x^{k+1}) - F(x^{k}) + F(x^{k}) + r^{k,l} \right\| \le \frac{\ell}{2} \left\| J_F(x^{k})^{-1} \left(F(x^{k}) + r^{k,l} \right) \right\|^{2}$$

Combining terms and using the triangle inequality

$$\|F(x^{k+1})\| \le \frac{\ell}{2} \|J_F(x^k)^{-1} (F(x^k) + r^{k,l})\|^2 + \|r^{k,l}\|$$

Using the Jacobian Bound and the triangle inequality

$$||F(x^{k+1})|| \le \frac{\beta^2 \ell}{2} ||F(x^k)||^2 + \left(1 + \frac{\beta^2 \ell ||r^{k,l}||}{2}\right) ||r^{k,l}||$$

Newton-Iterative Method

Basic Algorithm

Convergence Proof Cont. II

Using the bound on the iterative solver error

$$||F(x^{k+1})|| \le \frac{\beta^{2} \ell}{2} ||F(x^{k})||^{2} + \left(1 + \frac{\beta^{2} \ell ||F(x^{k})||^{2}}{2}\right) C ||F(x^{k})||^{2}$$

And combining terms yields

$$||F(x^{k+1})|| \le \left(\frac{\beta^{2}\ell}{2} + \left(1 + \frac{\beta^{2}\ell||F(x^{k})||^{2}}{2}\right)C\right)||F(x^{k})||^{2}$$
Easily Bounded

Newton-Iterative Method

Matrix-Free Idea

Consider Applying GCR to The Newton Iterate Equation

$$J_F\left(x^k\right)\Delta x^{k+1} = -F\left(x^k\right)$$

At each iteration GCR forms a matrix-vector product

$$J_F(x^k)p^l \approx \frac{1}{\varepsilon} \left(F(x^k + \varepsilon p^l) - F(x^k) \right)$$

It is possible to use Newton-GCR without Jacobians!

Need to Select a good ε

Theorem Statement

Given a matrix

$$M = \left[egin{array}{cccc} m_{1,1} & \cdots & m_{1,N} \ dots & \ddots & dots \ m_{N,1} & \cdots & m_{N,N} \ \end{array}
ight]$$

For each eigenvalue of M there exists an i, $1 \le i \le N$ such that

$$\left|\lambda - m_{i,i}\right| \leq \sum_{j \neq i} \left| m_{i,j} \right|$$

We say that the eigenvalues are contained in the union of the Gerschgorin circles

Theorem Statement

Picture of Gerschgorin

 $Im(\lambda)$

ith circle radius

Eigenvalues are in the union of all the disks

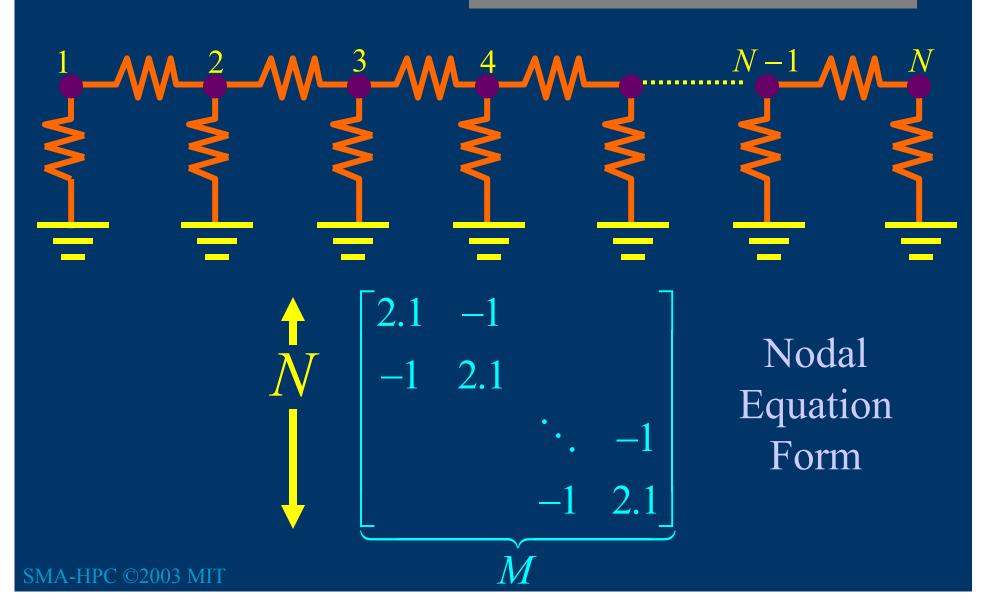
 $Re(\lambda)$

ith circle

center

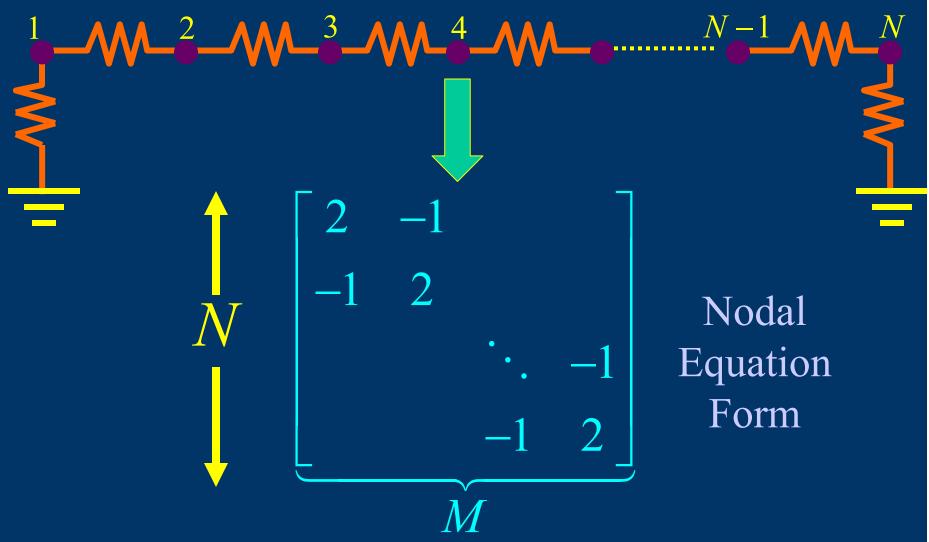
Grounded Resistor Line

Nodal Matix



Resistor Line

Nodal Matix



Basic Concepts

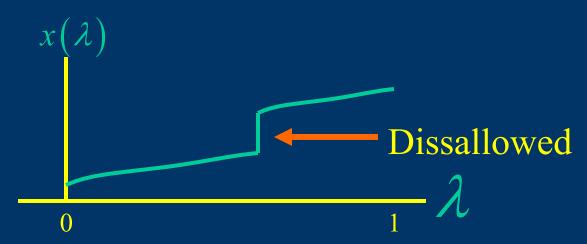
General Setting

Solve
$$\tilde{F}(x(\lambda), \lambda) = 0$$
 where:

a)
$$\tilde{F}(x(0),0) = 0$$
 is easy to solve \square Starts the continuation

b)
$$\tilde{F}(x(1),1) = F(x)$$
 \Box Ends the continuation

c) $x(\lambda)$ is sufficiently smooth \square Hard to insure!



Basic Concepts

Template Algorithm

Solve
$$\tilde{F}(x(0),0)$$
, $x(\lambda_{prev}) = x(0)$
 $\delta\lambda = 0.01$, $\lambda = \delta\lambda$
While $\lambda < 1$ {
 $x^{0}(\lambda) = x(\lambda_{prev})$
Try to Solve $\tilde{F}(x(\lambda),\lambda) = 0$ with Newton
If Newton Converged
 $x(\lambda_{prev}) = x(\lambda)$, $\lambda = \lambda + \delta\lambda$, $\delta\lambda = 2\delta\lambda$
Else
 $\delta\lambda = \frac{1}{2}\delta\lambda$, $\lambda = \lambda_{prev} + \delta\lambda$
}

Jacobian Altering Scheme

Description

$$\tilde{F}(x(\lambda),\lambda) = \lambda F(x(\lambda)) + (1-\lambda)x(\lambda)$$

Observations

$$\frac{\lambda=0}{\partial \tilde{F}(x(0),0)} = x(0) = 0$$

$$\frac{\partial \tilde{F}(x(0),0)}{\partial x} = I$$

Problem is easy to solve and Jacobian definitely nonsingular.

$$\frac{\lambda=1}{\partial \tilde{F}(x(1),1)} = F(x(1))$$

$$\frac{\partial \tilde{F}(x(0),0)}{\partial x} = \frac{\partial F(x(1))}{\partial x}$$

Back to the original problem and original Jacobian

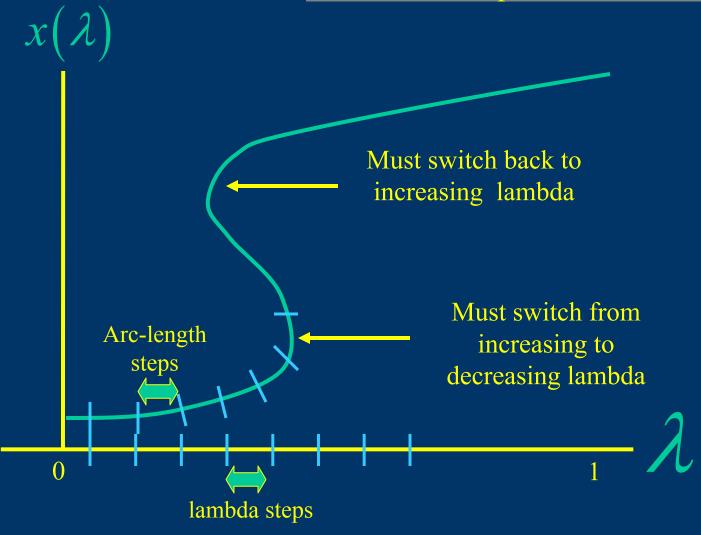
Jacobian Altering Scheme

Basic Algorithm

Solve
$$\tilde{F}(x(0),0)$$
, $x(\lambda_{prev}) = x(0)$
 $\delta\lambda = 0.01$, $\lambda = \delta\lambda$
While $\lambda < 1$ {
 $x^{0}(\lambda) = x(\lambda_{prev}) + ?$
Try to Solve $\tilde{F}(x(\lambda),\lambda) = 0$ with Newton
If Newton Converged
 $x(\lambda_{prev}) = x(\lambda)$, $\lambda = \lambda + \delta\lambda$, $\delta\lambda = 2\delta\lambda$
Else
 $\delta\lambda = \frac{1}{2}\delta\lambda$, $\lambda = \lambda_{prev} + \delta\lambda$
}

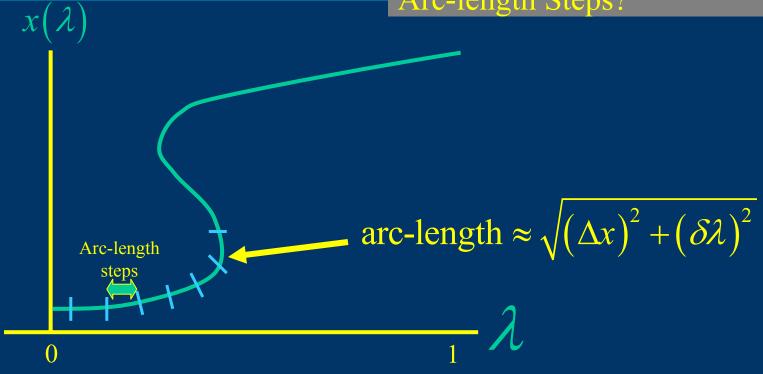
Jacobian Altering Scheme

Still can have problems



Jacobian Altering Scheme

Arc-length Steps?



Must Solve For Lambda

$$\tilde{F}(x,\lambda) = 0$$

$$(\lambda - \lambda_{prev})^{2} + ||x - x(\lambda_{prev})||_{2}^{2} - arc^{2} = 0$$

Jacobian Altering Scheme

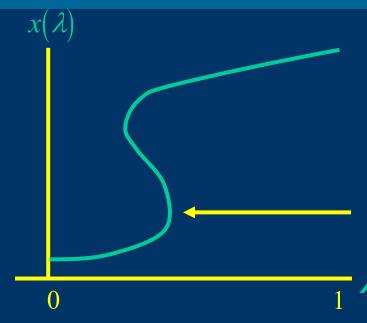
Arc-length steps by Newton

$$\begin{bmatrix} \frac{\partial \tilde{F}(x^{k}, \lambda^{k})}{\partial x} & \frac{\partial \tilde{F}(x^{k}, \lambda^{k})}{\partial \lambda} \\ 2(x^{k} - x(\lambda_{prev}))^{T} & 2(\lambda^{k} - \lambda_{prev}) \end{bmatrix} \begin{bmatrix} x^{k+1} - x^{k} \\ \lambda^{k+1} - \lambda^{k} \end{bmatrix} =$$

$$-\left[\frac{\tilde{F}(x^{k},\lambda^{k})}{\left(\lambda^{k}-\lambda_{prev}\right)^{2}+\left\|x^{k}-x(\lambda_{prev})\right\|_{2}^{2}-arc^{2}}\right]$$

Jacobian Altering Scheme

Arc-length Turning point



What happens here?

Upper left-hand Block is singular

$$\frac{\partial \tilde{F}(x^k, \lambda^k)}{\partial x}$$

$$\left(\right)$$

$$\frac{\partial F\left(x^{k},\lambda^{k}\right)}{\partial \lambda}$$

$$2\left(x^{k}-x\left(\lambda_{prev}\right)\right)^{T} \quad 2\left(\lambda^{k}-\lambda_{prev}\right)$$

Summary

- Image Segmentation Example
 - Large nonlinear system of equations
 - Examined issues in selecting numerical methods
- Newton Iterative Methods
 - Do not need to solve iteration equations exactly
- Gershgorin Circle Theorem
 - Sometimes gives useful bounds on eigenvalues
- Arc-Length Continuation