Introduction to Numerical Simulation (Fall 2003)
Problem Set #6 - due October 27

Note: Please get started early! This problem set is not due until the 27th, but it
has several problems!

1) When modeling distributions of charged particles governed by drift-diffusion equations, equilib-
rium analysis typically leads to the following nonlinear Poisson equation

_‘9281/;(2“3) _ (V) _ b)), (1)

where we will consider the interval z € [0, 1] with the boundary conditions ¢)(0) = =V and ¢(1) = V.

If a simple finite-difference scheme is used to solve the nonlinear Poisson equation on an N-node
grid, the discrete equations are

2 — Yiy1 — Vi1 + AJI'?(@W - efwi) =0

forie[2,...,N —1],

2h; — Py — (=V) + Az?(e¥t — e 1) = 0,
and

Ny — Yn_1 — V + Az?(e¥N —e™¥V) = 0.

Note, Az = 1/(N + 1) (not 1/(N — 1)-the nodes at + = 0 and = 1 are not included in the
discretization, but rather enter through the boundary conditions).

a) Prove that the Jacobian associated with the above discretized equations is nonsingular regardless
of the values for the 1);’s. What does this imply about damped Newton methods applied to solving
this problem.

b) Solve the above equations with a multidimensional Newton’s method using a zero initial guess
for the v;’s, and N = 100. Demonstrate that your program achieves quadratic convergence, and
determine the number of Newton iterations required to insure one part in 10° accuracy in the solu-
tion for two cases: when V =1 and when V' = 20. What happens when V = 1007

c¢) Try using damped Newton to solve for the 1;’s when V' = 100. For roughly how large a V' can
you compute 7 to one part in 10° accuracy in fewer than 200 residual evaluations (be sure to count
the function evaluations you perform to determine how much to damp the newton delta). How
many linear system solutions were required?

2) Consider the Jacobian-free method described in class. In that approach, Newton’s method is
used to solve F(x) = 0, and the GCR algorithm is used to solve the Newton update equation,

1

Jp(2F) (P — 2*) = —F(a*). Using GCR implies that Jp(z*) will not factored, but is instead only
used to form matrix-vector products, Jr(z¥)r. The method is then made Jacobian (or matrix)-free
by using the approximation

To(zh)r ~ é[F(:ck +ar) — F(a4)].

So, the name Jacobian-free follows from the fact that only a routine to compute F(z) is needed,
but not a routine to compute Jp(z).

a) For the discretized nonlinear poisson equation from problem one, compare the convergence rate
of standard Newton to the convergence rate of the Jacobian-free method. To compare converge
rates, make a semilog plot of ||F(z*)||/||F(«°)|| versus k for the two methods and explain your re-
sults. For purposes of this experiment, use N = 100 and V = 10. For the GCR algorithm, assume
convergence when H:—ﬁH < € where r* is the k' residual and € = 0.1. Finally, when approximating

the matrix-vector product, use a = 10~ (defined above).

b) How accurate can you make your Jacobian-free method by modifying € and a? That is, how
close to zero can you make F'(z*) ? How close to zero can you make F'(z*) using standard Newton’s
method?

c¢) Suppose you are interested in low accuracy calculations, and only need to converge Newton’s
method so that ||F(z*)|| < 1073, For what value of € will you achieve the desired accuracy in the
fewest function evaluations?

d) Another approach to trying to apply Newton’s method using only function evaluations is to
compute the Jacobian approximately by finite-differences. That is,

(r(h))is & TR +0ey) = Fia®)

where e; is the vector with 1 in the j* entry and zeros elsewhere. How many function evaluations
per Newton iteration would such a finite-difference method require?

3) In this problem, you will debug our matlab based Newton solver for calculating the force equi-
librium position of joints in a loaded structure (or you are certainly welcome to write your own
Newton solver from scratch, whichever you find easier).

The program should read the following format as input.

joints:
jlabel nodenumber xposition yposition

where label is an arbitrary label, nodenumber is an integer joint node number, and zposition and
yposition are the joint’s x and y coordinates when the struts are not stretched (the structure is not
loaded).

struts:
slabel mnodel mnode2 elasticity

where label is an arbitrary label, nodel and node2 are integer joint node numbers, and elasticity
is the elasticity of the strut.

loads:
llabel nodenumber xforce yforce

where label is an arbitrary label, nodenumber is the joint node number where the load force is
applied, and zforce and yforce are the x and y components of the force.

If you decide to use our matlab scripts with carefully inserted bugs, then on the course web page,
you will find a set of Matlab files which use Newton’s method to find the equilibrium position of a
set of struts and joints subjected to external forces. The code uses the nodal analysis formulation,
so you may wish to review that material before starting this problem.

The driver files for the struts/joints code are readsystem.m and newton.m. readsystem.m reads in
the unstretched (initial) joint positions, the strut connectivity, and the applied forces. newton.m
contains the code for Newton’s method. The file loadNewton.m constructs the right-hand side and
Jacobian for Newton’s method. The file force.m contains code to calculate the strut forces and
derivatives of forces. It may be necessary to modify any or all of newton.m, loadNewton.m and
force.m. There are three test files (which will give clues as to what is wrong) — testl.sys, test2.sys
and test3.sys.

a) Provide a Newton solver that works on testl.sys, test2.sys and test3.sys. To do this, determine
if the provided code works (if it does, you have to justify this conclusion, if it doesn’t, you'll have
to explain why and fix it).

b) Demonstrate that your resulting Newton’s method, applied to each of the example problems,
converges quadratically.

4) There are a few more test examples that will cause problems even for a correctly programmed
Newton method.

a) Try your debugged Newton-based struts and joints solver on example test4.sys. What happens
and why?

b) Try your debugged Newton-based struts and joints solver on examples test5.sys and test6.sys.
Why are the answers different?

5) (Final Entries by midnight October 31st) The traditional 6.336 Newton method contest!!! A
Prize for the person who can get Newton’s method to converge on the most examples, and in the
case of a tie, in the fewest iterations.

a) Change your struts and joints program so that the force is now exponentially related to how
much the strut has stretched. Specifically, suppose the magnitude of the strut restoring force is

given by
‘f‘ — eelasticity * (length — unstretchedlength) 1.0

Note, if the change in length is small, the above form reduces to the model you already implemented.
Check your new program on some SIMPLE examples. Verify quadratic convergence!

b) Try whatever schemes you can think of to get Newton’s method to converge on as many of
test7.sys through test1l.sys as you can. Be forewarned, however, even we haven’t necessarily suc-
ceeded with all of them.

