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Chapter 3 

Power Factor and Measures of 

Distortion 

Read Chapter 3 of “Principles of Power Electronics” (KSV) by J. G. Kassakian, M. 

F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991. Look at the AC side. 

Definitions and Identities 

Two functions X and Y are orthogonal over [a, b] if: 

∫ b 
X(t)Y (t)dt = 0 (3.1) 

a 

Now: 

∫ 2π sin(mωt) sin(nωt + φ)dωt = 0, if n = m sinusoids of different frequencies 0• 6 ⇒ 

are orthogonal.
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∫ 2π • 0 sin(ωt) cos(ωt)dωt = 0 ⇒ sine and cosine are orthogonal. 

In general: 

1 ∫ 2π 1 
sin(ωt) sin(ωt + φ) = cos φ (3.2) 

2π 0 2 

These definitions will be useful for calculating power, etc. 

Suppose we plug a resistor into the wall. 

Rwire Fuse i 

+ 

V RLVsSin(ωt) 

− 

Figure 3.1: Resistor 

P = < V i > 

= VRMS iRMS 

= i2 R (3.3) RMS 

The fuse is rated for a specific RMS current. Above that, it will blow so that 

dissipation in Rwire does not start a fire. Neglecting Rwire, for 115VAC,RMS , 15ARMS 

fuse, we get ∼ 1.7kW max from wall. 

Suppose instead we plug an inductor into the wall. 

Neglecting Rwire: 



∫ 

∫ 

√ 
∫ 
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Rwire Fuse i 

+ 

V LVsSin(ωt) 

− 

Figure 3.2: Inductor 

Vs
i = −

ωL 
cos(ωt) (3.4) 

1 
< P > = V (t)i(t)d(ωt)

2π 
V 2 

= s sin(ωt) cos(ωt)d(ωt)−
2πωL 

= 0 (of course) (3.5) 

Mathematically, it is because V and i are orthogonal. While we draw no real 

power, we still draw current. 

1 2π 
iRMS = i2(ωt)d(ωt)

2π 0 

Vs 
= (3.6) √

2ωL 

@115V, 60Hz, L ≤ 20mH iRMS ≥ 15A (3.7) → 

So we still will blow the fuse (to protect the wall wiring), even though we do not 



∑ 

√ 

∫ 
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draw any real power at the output! (some power dissipated in Rwire). In this case we 

are not utilizing the source well. 

Power Factor 

To provide a measure of the utilization of the source we define Power Factor. 

. < P > Real Power 
P.F. = = (3.8) 

VRMS iRMS Apparent Power 

For a resistor < P >= VRMS iRMS P.F. = 1 best utilization. For a inductor → 

< P >= 0 P.F. = 0 worst utilization. → 

Consider a rectifier drawing some current waveform, 

VsSin( t)ω V(t) 

+ 
Rectifier 

i(t) 

− 

Figure 3.3: Rectifier 

Express i(t) as a Fourier series: 

∞ 

i(t) = in sin(nωt + φn) Sum of weighted shifted sinusoids (3.9) 
n=0 

1 1 1 
Note: iRMS = i1

2 + i2
2 + + i2 + 

2 2 
· · · 

2 n · · · 
1 

< P > = V (t)i(t)d(ωt)
2π 2π 



∫ 

∫ 

∫ 
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1	 ∑ 
= Vs sin(ωt) in sin(nωt + φn)

2π 2π n 
∞	 
∑ 1 

= Vsin sin(ωt) sin(nωt + φn)	 (3.10) 
2	 2π n=0 

By orthogonality all terms except fundamental drop out. 

1 
< P > = Vsi1 sin(ωt) sin(ωt + φ1)

2	 2π 

Vsi1 
= cos φ1

2 

= Vs,RMS i1,RMS cos φ1 (3.11) 

So the only current that contributes to real power is the fundamental component 

in phase with the voltage. 

VRMS i1,RMS 
P.F. =	 cos φ1

VRMS iRMS 
i1,RMS 

= cos φ1 (3.12) 
iRMS 

We can break down into two factors: 

i1,RMS 
P.F.	 = ( ) cos φ1


iRMS 
·


= kd(distortion factor) kθ(displacement factor) · 

(3.13) 

•	 kd, distortion factor (≤ 1) tells us how much the utilization of the source is 

reduced because of harmonic currents that do not contribute to power. 



√ 
√ 

√ 
√ ∑ 

√ 
√ 
√ 

√ 

√ ∑ 
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• kθ, displacement factor (≤ 1) tells us how much utilization is reduced due to 

phase shift between the voltage and fundamental current. 

Total Harmonic Distortion (THD) 

Consider another measure of distortion: Total Harmonic Distortion (THD). 

. n=1 in 
2 

THD = √ 6 (3.14) 
i21 

This measure the RMS of the harmonics normalized to the RMS of the funda­

mental (square root of the power ratio). Distortion factor and THD are related: 

√ 
n=1 i2 

THD = √ 6 n 

i2 
1 

√ i2 
RMS − i21,RMS = 

i2 
1,RMS 

i2 

THD2 = 
i2 

RMS − 1 
1,RMS 

i2 
RMS = 1 + THD2 

i2 
1,RMS 

iRMS 
= 

√
1 + THD2 

i1,RMS 

1 
kd = (3.15) 

1 + THD2 

Example: 

V = Vs sin(ωt) 



( ) 
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 
 
 4 ipk 
 in = 

πn 2
i(t) = square wave 

 
 
 i0 = iave = 1

2 ipk 

THD = 121% 
ipk 4 1 
2 · π · √2kd = 

ipk√
2 

2 
= 

π 

P.F. = 0.63 (3.16) 

i(t) 

Ipk 

ω t 
π 2π 

Figure 3.4: Example 

(Passive) Power Factor Compensation (KSV: Section 3.4.1) 

Lets focus on the displacement factor component of power factor. For simplicity, 

lets assume a linear load (e.g. R-L) so that voltages and currents are sinusoidal. 

For sinusoidal V and i: 

< P > 
P.F. = = cos φ (3.17) 

VRMS iRMS
 

φ is the power factor angle:
 

Leading φ < 0 Capacitive • 

Lagging φ > 0 Inductive • 
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Real power: 

P = VRMS IRMS cos φ (3.18) 

Define reactive power as: 

.
Q = VRMS IRMS sin φ (3.19) 

Q 

S 

P 

Figure 3.5: Reactive Power 

In vector form S~ = P + jQ. In phaser form V ,~ ~i S~ =< V I∗ >→ 

units 

Apparent Power S =‖ S~ ‖= VRMS IRMS V A 

Average Power Re{S} = P = VRMSIRMS cos φ W 

Reactive Power Im{S} = Q = VRMS IRMS sin φ V AR 

We can use these results to help adjust the displacement factor of a system. (make 

Qnet 0). → 
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i 

θ 

2 2 
R +(ω L) 

ω L 
L 

VsCos(ω t) R 
Im S 

i*R v Re 

i 

Figure 3.6: R-L Load
 

Suppose we have an R-L load (e.g. an induction machine):
 

Vs ωL 
i(t) = √

ω2L2 + R2 
cos(ωt − arctan( 

R 
)) 

since S = 
. 

V I∗ 

ωL 
voltage-current phase φ = arctan( )

R 
ωL 

P.F. = cos(arctan( )) 
R 

R 
= √

R2 + ω2L2 
< 1 (3.20) 

We can add some additional reactive load to balance out and give net unity power 

factor. 

S = VRMS IRM S 

= 
V 2 

2
√

ω2L 
s 
2 + R2 

(3.21) 

P = S cos φ
 

= VRMS IRMS cos φ
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V 2R 
= s (3.22) 

2(ω2L2 + R2) 

jQ = jS sin φ 

= jVRMS IRMS sin φ 

ωLV 2 

= j s (3.23) 
2(ω2L2 + R2) 

So we have real and reactive power. 

Suppose we add a capacitor in parallel: 

i’ 

CVsSin(ωt) 

Figure 3.7: Capacitor


Zc 

1 

Zc


Vphase − iphase


i′


S ′


P ′ 

1 
= 

jωC 

=
1 

e−j π 
2 

ωC 

= ωCej π 
(3.24) 2 

= −90◦ 

π 
= VsωC sin(ωt + ) (3.25) 

2 

= VRMS IRMS 

1 
= V s 

2ωC (3.26) 
2 

= 0 (3.27) 
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1 
Q′ = −j 

2 
V s 

2ωC (3.28) 

So by placing the capacitor in parallel: 

t)VsCos(ω 
L 

R 

P, Q Q’ 

C 

Figure 3.8: Parallel Capacitor 

S = P + jQ + jQ′ 

make jQ and jQ′ cancel: Q + Q′ = 0


ωLV 2 1
sj 
2(ω2L2 + R2) 

− j 
2 
V 2ωC = 0 s 

L 
C = (3.29) 

ω2L2 + R2 

Example: 

ω = 377RAD/sec (ωHZ) 

R = 1Ω 

L = 2.7mH 

C = 1.32mF ⇒ 
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If we know our load, we can add reactive elements to compensate so that no dis­

placement factor reduction of line utilization occurs. Real, reactive power definitions 

are useful to help us do this. This does not help with distortion factor. 


