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Chapter 3

Power Factor and Measures of

Distortion

Read Chapter 3 of “Principles of Power Electronics” (KSV) by J. G. Kassakian, M.

F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991. Look at the AC side.

Definitions and Identities

Two functions X and Y are orthogonal over [a, ] if:

/bX(t)Y(t)dt —0 (3.1)

Now:

o 27 sin(mwt) sin(nwt + ¢)dwt = 0, if n # m = sinusoids of different frequencies

are orthogonal.
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e 27 sin(wt) cos(wt)dwt = 0 = sine and cosine are orthogonal.

In general:

1

2 1
gy /0 sin(wt) sin(wt + ¢) = 5 cos ¢ (3.2)
These definitions will be useful for calculating power, etc.

Suppose we plug a resistor into the wall.

Rwire

VsSingt) @ ‘ v RL

Figure 3.1: Resistor

P = <Vi>
= Vemstrms

- Z?%MSR (3.3)

The fuse is rated for a specific RMS current. Above that, it will blow so that
dissipation in R, does not start a fire. Neglecting Ry, for 115Vac rims, 15ArMs
fuse, we get ~ 1.7kW max from wall.

Suppose instead we plug an inductor into the wall.

Neglecting R ;re:
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— =

Rwire Fuse

A

+

VsSingt) @ v L

Figure 3.2: Inductor

- —;/—Z cos(wt) (3.4)

<P> — % [Vt
= —2:;L/sin(wt) cos(wt)d(wt)

= 0 (of course) (3.5)

Mathematically, it is because V and ¢ are orthogonal. While we draw no real

power, we still draw current.

1 2T
lRMS = \// i2(wt)d(wt)
2m Jo
Vs

N7 (3.6)

@115V, 60Hz, L < 20mH — igpys > 15A (3.7)

So we still will blow the fuse (to protect the wall wiring), even though we do not
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draw any real power at the output! (some power dissipated in R..). In this case we

are not utilizing the source well.

Power Factor

To provide a measure of the utilization of the source we define Power Factor.

PF - < P> Real Power
" Vemsirms  Apparent Power

(3.8)

For a resistor < P >= Vyystrus — P.F. = 1 best utilization. For a inductor
< P>=0— P.F. =0 worst utilization.

Consider a rectifier drawing some current waveform,

i(t)

—

Rectifier

+

VsSingt) @ V(t)

Figure 3.3: Rectifier

Express i(t) as a Fourier series:

i(t) = > insin(nwt+ ¢,) Sum of weighted shifted sinusoids (3.9)
n=0

1 1 1
Note: igys = \/—Z'%—I——Z‘%+---—|—§@'%+...
1

2 2
<P> = /2 V(t)i(t)d(wt)

2
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1
= 5 Vs sin(wt) Y i, sin(nwt + ¢,,)
™ J2m n

_ i% /2 Vi, sin(wt) sin(nwt + ¢,,) (3.10)

By orthogonality all terms except fundamental drop out.

1
<P> = 5 Vyiq sin(wt) sin(wt + ¢1)
2
Vi
= 221 Cos ¢

= Vs rMS% RMS COS O (3.11)

So the only current that contributes to real power is the fundamental component

in phase with the voltage.

Vrmst1,RMS
PF. = —/——————cos¢,
Vrmsirus
11,RMS
= oS ¢ (3.12)
1RMS

We can break down into two factors:

PF. = (Z%’RMS)-cosgzﬁl
LRMS

= kg(distortion factor) - kg(displacement factor)

(3.13)

e kg, distortion factor (< 1) tells us how much the utilization of the source is

reduced because of harmonic currents that do not contribute to power.
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e ky, displacement factor (< 1) tells us how much utilization is reduced due to
phase shift between the voltage and fundamental current.
Total Harmonic Distortion (THD)

Consider another measure of distortion: Total Harmonic Distortion (THD).

it

THD = (3.14)

This measure the RMS of the harmonics normalized to the RMS of the funda-

mental (square root of the power ratio). Distortion factor and THD are related:

THD — | Znrin
1
- Thars — Z%,RMS
)
Y. rMS
?:2
THD2 — .QRMS -1
Y.RMS
ﬁ%MS 2
Y1, rRMS
LRMS - _ T THD?
11,RMS

1
Ko = 1o THD (3.15)

Example:

V = Visin(wt)
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square wave

0 = tave = Hlpk

THD 121%
ik 41
kd 2 i:k V2
ﬁ
2
N m
P.F. = 0.63 (3.16)
i(t)
Ipk
wt
m 2n

Figure 3.4: Example

(Passive) Power Factor Compensation (KSV: Section 3.4.1)

Lets focus on the displacement factor component of power factor. For simplicity,
lets assume a linear load (e.g. R-L) so that voltages and currents are sinusoidal.

For sinusoidal V' and i:

< P>

P.F. = COS ¢ (3.17)

VeMmSirMS

¢ is the power factor angle:
e Leading ¢ < 0 Capacitive

e Lagging ¢ > 0 Inductive
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Real power:

P = VaarsIrus cos ¢ (3.18)
Define reactive power as:
Q = VrusIrussing (3.19)
Q
S
p

Figure 3.5: Reactive Power

In vector form S = P + 7@. In phaser form ‘7, i—>S=<VI*>

units
Apparent Power S =| S ||I= VansIrus VA
Average Power Re{S} = P = Veyslpuscosd W

Reactive Power Im{S} = Q = Vryslrussing VAR

We can use these results to help adjust the displacement factor of a system. (make

Qnet - 0)
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Figure 3.6: R-L Load

Suppose we have an R-L load (e.g. an induction machine):

i(t) = ————— cos(wt — arctan(—-))
VPRI + R2 R
since § = VI*

voltage-current phase ¢ = arctan(%)
L
PF. = cos(arctan(%))
R

— <1 3.20
N/ (3.20)

We can add some additional reactive load to balance out and give net unity power

factor.

S = Veuslrus
2
_ Ve (3.21)
2vVw?l? 4+ R2
P = Scoso

= VemsIras cos ¢



_ VR
2(w2L? + R?)

JQ = jSsing
= JjVrmsIprmssing

wLV?

- Rt Ry

So we have real and reactive power.

Suppose we add a capacitor in parallel:

Ay
/1

VsSingt) @

Figure 3.7: Capacitor

1
Zc — .
JwC
1 n
= — e J2
wC’e
1 .
7 = wCe’z
‘/phase_iphase = —90°
L, . ™
i = szCsm(wt—i—§)
S" = Vermslrus
1
= 5‘/;2(4)0
P =0
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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1
Q = —jzViuC (3.28)

So by placing the capacitor in parallel:

P, ¢Q L ’
VsCos(t) @

o)
A
/]

Figure 3.8: Parallel Capacitor

§ = P+jQ+i¢

make 7Q and jQ' cancel: Q + Q" = 0

wLV?

1
. whv, ,_VQ _
Iy ) gVt = 0

¢ = arim (3:29)

Example:

w = 37TRAD/sec (WHZ)
R = 190
L = 27TTmH

=C = 132mF
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If we know our load, we can add reactive elements to compensate so that no dis-
placement factor reduction of line utilization occurs. Real, reactive power definitions

are useful to help us do this. This does not help with distortion factor.



