
6.302 Feedback Systems
Recitation 5: Op-amp Circuits and Analog Computers
Prof. Joel L. Dawson 

In lecture, Prof. Roberge spoke of building elaborate systems using op-amp circuits. When we do this, we 
habitually make statements like, “...and we’ll choose the dynamics such that the poles contributed by the 
op-amps themselves are negligible.” Let’s discuss. 

Consider a two-pole system whose behavior interests us only in the range from DC to ω . A pole-zero 0
diagram: jω 
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The angle φL is small compared to φS. => pole @ ωLARGE contributes very little phase shift. 
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So this transfer function is well-approximated by the single-pole transfer function 1 for 
frequencies from DC to ω . ( ωs

S
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But what determines ω ? Depends on the context, but for feedback systems we often look at the loop trans­
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When |L(s)| = |GH| <<1, we arguably have an open-loop system: 

So when we’re looking for dynamics to ignore, we will often discard poles that are large compared to the 
loop crossover frequency, or the frequency at which |L(S)| = �. 

We need an integrator, a summer, an inversion, and a gain. 
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Op-amp circuits for modeling our systems 
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(Note that this also covers us for an inversion.) 
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And, a block that we do not use: 
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Difficult to manage in a noisy world: 
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High frequency noise is empha­
sized in the output 
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Also against the differentiator: it’s hard enough to get high gain at DC. High gain at high frequencies? 
Forget it. 

Now, on to building analog computers. Suppose we have an all-pole system. It begins as a differential 
equation: 

dny dn-1y dn-2yan dtn + an-1 dtn-1 + an-2 dtn-2 + .......+a0y = x 

Completely general procedure starts with taking the Laplace transform: 

(a sn  + a sn-1 + a sn-2 + .....+ a )Y(s) = x(s)n n-1 n-2 0

         The system function, BTW, is: Y(s) 1= 
x(s) a sn  + a sn-1 + a sn-2 + .....+ an n-1 n-2 0 

Solve for the highest order derivatve:

 a snY(s) = X(s) - (a sn-1 + a sn-2 + .....+ a )Y(s) n n-1 n-2 0

a a an-1 sn-1 + n-2 sn-2 + .......+ 0
 Y(s) snY(s) = 1 X(s) ­ a a aa n n nn 

Put down a big summing junction: 
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Generate the derivatives that you need: 
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Complete the mapping: 
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EXAMPLE: First order system 

Y(s) 1 
= x(s) τs+1 

(τs+1)Y(s) = x(s) 

sY(s) =  1 x(s) -  1 Y(s) 
τ τ 

=>
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2nd order system from class: v �0 = vi s2 
+ 2ζs + 1

ω 2 ω n n 

With a little bit of manipulation, we can write the block diagram as 
svv 0 

ωn
2 0 ωn ωn 

ωn 
v0 

Σ s 

2ζ 
--

vi 
s 

s2 

If we built this as an electronic circuit, it would be analogous to our mechanical system consisting of a mass, 
a viscous fluid, and a forcing mechanism: 
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where I want it? 
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An analog computer might look something like this: 
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Make sure that ω  is small compared to the parasitic poles of the op-amps. Then, we get a very good analog. n
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