
    

    

        

6.302 Feedback Systems
Recitation 4: Complex Variables and the s-Plane
Prof. Joel L. Dawson 

Number � question: Why deal with imaginary and complex numbers at all? 

One answer is that, as an analytical technique, they make our lives easier. Consider passing a cosine through 
an LTI filter with impulse response h(t): 

x(t) = cosωt h(t) 
y(t) 

Because this is a linear and time-invariant system, we can apply the convolution integral to figure out y(t): 

∞y(t) = ∫  -∞ h(τ)cosω(t-τ)dτ 

Evaluating this can be easy or hard, depending on the form of h(t). But, if we take advantage of Euler’s Iden­
tity, cosωt = ½ (ejωt + e-jωt) and so 

∞ h(τ)[ejω(t-τ) + e-jω(t-τ)]dτy(t) = ½ ∫-∞ 

= ½ [∫ h(τ)e-jωτ dτ]ejωt  + ½ [∫ h(τ)e-j(-ω)τ dτ]e-jωt∞ 
-∞ 

∞ 
-∞ 

H(jω) H(-jω) 

LAPLACE 
TRANSFORM 

 = ½ H(jω)ejωt  + ½ H(-jω)e-jωt 

Exponentials, even complex exponentials, are eigenfunctions of LTI systems. 
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So complex numbers appear to be convenient. But in our systems, we’re always dealing with “real” signals in 
the sense that there is no “other” or “imaginary” part. What is it about our LTI mathematical machinery that 
lets us plunge into the complex s-plane and re-emerge safely in the world of real signals? 

Let’s look at how we get into the s-plane in the first place. Starting with a real time-domain signal h(t), we 
use the Laplace Transform evaluated on the jω axis: 

H(jω) = ∫ ∞ h(t)e-jωt dt-∞ 

= ∫ ∞ h(t)cosωt dt  - j∫ ∞ h(t)sinωtdt  -∞ -∞ 

We can say that H(jω) is conjugate symmetric: 

Re {H(jω)} = Re {H(-jω)}

Im {H(jω)} = -Im {H(-jω)}


So the real part of H(jω) is an even function of ω, while the imaginary part is an odd function of ω. Just the 
fact that h(t) is real guaranteed this. 

Great. We’re in the world of the s-plane now, and all of our system functions, frequency responses, etc., have 
this property of being conjugate symmetric. Convince yourself that any product of H(jω)G(jω) will be conju­
gate symmetric if  H(jω) and G(jω) have this property separately. 
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Time passes. We do our manipulations in the s-plane, passing through filters, amplifiers, and motors to 
our hearts’ content. We have our output Y(jω), and it’s time to go back to the time domain. We pull out our 
trusty inverse Laplace Transform, and choose as our contour of integration the jω axis: 

� ∞y(t) = ∫-∞Y(jω)ejωt dω2π 

Let Y (jω) = Re{Y(jω)}R

Y (jω) = Im {Y(jω)}Im

∞�y(t) = 2π ∫-∞ (YR +jYim)(cosωt  + jsinωt)dω 

= �  ∫ (YR cosωt - YImsinωt)dω +   j ∫ (YR sinωt - YImcosωt)dω 2π 
∞ 

-∞ 2π 
∞ 

-∞ 

real part              imaginary part 

Our hope is that the imaginary part is zero. Let’s examine the terms: 

ƒ (ω) ODD

Y sinωt Y cosωtR Im

     even  odd        odd  even
ω 

   product is ODD         product is ODD

                        sum is an ODD function 

integrating over an odd function 
         gives ZERO! 

1 ∞We’re left with the purely real function of time: y(t) =   2π ∫-∞ (YR cosωt - YImsinωt)dω 
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Our LTI machinery, then, gives us the convenience of complex variables and the guarantee that our results 
will be real functions in time. 

Properties of the Laplace Transform 

DIFFERENTIATION: L = sF(s) - ƒ(0) 
dƒ
dt 

t F(s) 
INTEGRATION: L [ ∫ 0 ƒ(τ)dτ] = s 

lim lim 
INITIAL VALUE THEOREM: t —> 0+ ƒ(t) = s—>∞ sF(s) 

lim lim 
FINAL VALUE THEOREM: t —> ∞ ƒ(t) = s—>0 sF(s) 

We can use these properties to make our calculations easier. 

1Example �:  H(s)  = s2 ; sketch h(t) 

tWe know that L -� {1/s} is u(t). Using the integration property, we know that h(t) must be ∫ 0u(t)dt, 
or a ramp: h(t) 

1 

t 
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Example 2: 
s+2 

H(s) = s+1 sketch the step response. 

lim
Initial value: s —>∞ s

lim
Final value: s —>0 s

How it gets from start to finish: 

1 s+2 = A B+ s s+1  s s+1 

= 1 

= 2 

1 s+2
 s s+1 

1 s+2
 s s+1 

~e-t u(t) 
A step u(t) 

� 
2 

ƒ(t) 

t 

τ=� 

Class Exercise: 

Sketch step response of H(s) =    1-s
 s+1 
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ŷ


So with poles and zeros, we appeal to a geometrical picture. 

     (s-z1 ) (s-z2 )
     (s-p1 ) (s-p2 ) 

s-z1 s-z2 

s 
s-p1 

1

+

{ {
} }vector vector 

vector vector 

⇀ ⇀ ⇀
A  A - B 

Complex numbers and vector geometry 

⇀ ˆRecall that for ordinary vectors, A = a x + a1 ŷ. 

⇀ ˆ ⇀ ⇀ˆAnd B = b x + b y, the vector A - B had a very definite meaning: 

- b ) ŷ2 

2 

1 2 
⇀
B

x̂⇀ ⇀ ˆA - B = (a  - b ) x + (a1 1 2

For complex numbers, we do a similar thing: 

u = a  + ja1 2 } u - v = (a  - b ) + j(a1 2
v = b  + jb1 2 

We treat complex numbers like vectors. 

- b2 )
1

jω 

p

σ
F(s) =
 z z1 2 
s-p2 p2 

The vector s - z, has a magnitude (R ) and an angle, or phase φZ�

ejφz1 r ejφz2
z1 z2

ejφp2
p2

. We can write F(s) asZ�

 r
 rp1e

jφp1 r
 r rz1 z2F(s) e j(φz1 + φz2 - φp1 - φp2)=
 =

r rp1 p2 
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