MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.302 Feedback Systems

Spring Term 2007 Problem Set 10 Issued: May 1, 2007 Due: Tuesday, May 8, 2007

Problem 1: For each of the following nonlinearities, sketch by hand the describing function magnitude curve ($|G_D|$ vs. E). Do not calculate the describing function $G_D(E)$.

Describing Function A

Describing Function B

Describing Function C

Describing Function D

Describing Function E

Describing Function F

Describing Function G

Problem 2: Integrator-and-schmitt-trigger oscillator. Use both exact analysis and describing functions to determine the frequency and amplitude at which the system in the figure below will oscillate. Compare the results.

Problem 3: By using describing functions, determine the frequency and amplitude at which the system in the figure below will oscillate.

Extra Credit Problem: Consider the PLL shown below. Assume that the phase detector output levels are ground and V_{DD} . Assume that both the input to the loop and the VCO output are square waves that swing between ground and V_{DD} . Assume that the relationship between control voltage and output frequency of the VCO is 10 MHz per volt and that the op-amp is ideal.

- (a) Suppose that the loop has been in lock forever and that the input frequency has been held constant. Sketch the input signals to the phase detector with respect to time.
- (b) Find the loop transfer function L(s).
- (c) Assume $V_{DD} = 5$ V, $R_1 = 100 \Omega$ and $R_2 = 0$. What value of C gives a loop crossover frequency of 100 kHz? What is the phase margin?
- (d) With the value of C from part (d), find the value of R_2 that will provide a phase margin of 45° while preserving the crossover frequency.