Lectures 8 & 9

M/G/1 Queues

Eytan Modiano MIT

M/G/1 QUEUE

- Poisson arrivals at rate λ
- Service time has arbitrary distribution with given E[X] and E[X²]
 - Service times are independent and identically distributed (IID)
 - Independent of arrival times
 - E[service time] = 1/μ
 - Single Server queue

Pollaczek-Khinchin (P-K) Formula

$$W = \frac{\lambda E[X^2]}{2(1-\rho)}$$

where $\rho = \lambda/\mu = \lambda E[X] = line utilization$

From Little's formula,

$$N_Q = \lambda W$$

$$T = E[X] + W$$

$$N = \lambda T = N_Q + \rho$$

M/G/1 EXAMPLES

Example 1: M/M/1

$$E[X] = 1/\mu$$
; $E[X^2] = 2/\mu^2$

$$W = \frac{\lambda}{\mu^2(1-\rho)} = \frac{\rho}{\mu(1-\rho)}$$

Example 2: M/D/1 (Constant service time $1/\mu$)

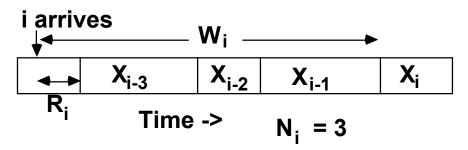
$$E[X] = 1/\mu$$
; $E[X^2] = 1/\mu^2$

$$W = \frac{\lambda}{2\mu^2(1-\rho)} = \frac{\rho}{2\mu(1-\rho)}$$

Proof of Pollaczek-Khinchin

Let W_i = waiting time in queue of ith arrival
 R_i = Residual service time seen by I (I.e., amount of time for current customer receiving service to be done)

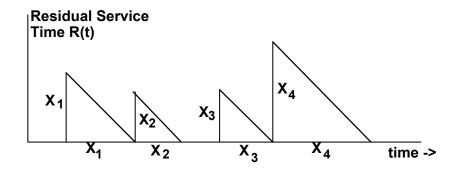
N_i = Number of customers found in queue by i



$$W_{i} = R_{i} + \bigcup_{j=i-N_{i}}^{i-1} X_{j}$$

- $E[W_i] = E[R_i] + E[X]E[N_i] = R + N_O/\mu$
 - Here we have used PASTA property plus independent service time property
- $W = R + \lambda W/\mu => W = R/(1-\rho)$
 - Using little's formula

What is R? (Time Average Residual Service Time)



Let M(t) = Number of customers served by time t E[R(t)] = 1/t (sum of area in triangles)

$$\mathbf{R}_{t} = \frac{1}{t} \int_{0}^{t} R(\tau) d\tau = \frac{1}{t} \frac{M(t)}{i=1} X_{i}^{2} = \frac{1}{2} \frac{M(t)}{t} \frac{M(t)}{i=1} \frac{X_{i}^{2}}{M(t)}$$

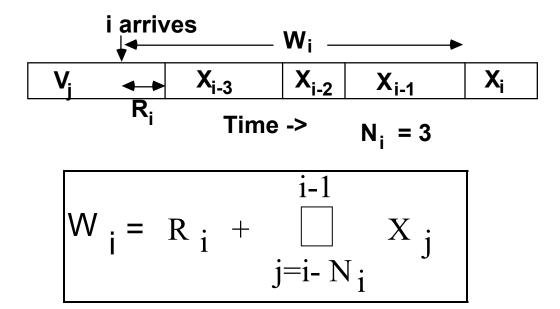
As t -> Infinity $\frac{M(t)}{T}$ = average

$$\frac{M(t)}{t}$$
 = average departure rate = average arrival rate

$$\frac{M(t)}{t} \frac{M(t)}{\prod_{i=1}^{M(t)} X_i^2} = E[X^2] \implies R = \lambda E[X^2]/2$$

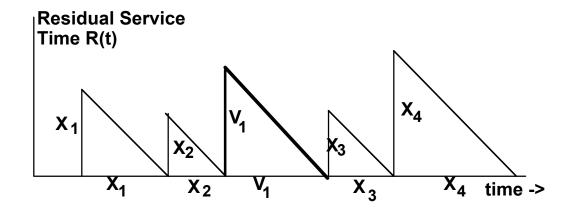
M/G/1 Queue with Vacations

- Useful for polling and reservation systems (e.g., token rings)
- When the queue is empty, the server takes a vacation
- Vacation times are IID and independent of service times and arrival times
 - If system is empty after a vacation, the server takes another vacation
 - The only impact on the analysis is that a packet arriving to an empty system must wait for the end of the vacation



$$E[W_i] = E[R_i] + E[X]E[N_i] = R + N_Q/\mu = R/(1-\rho)$$

Average Residual Service Time (with vacations)



$$\mathbf{R} = [\mathbf{R}(t)] = \frac{1}{t} \int_{0}^{t} R(\tau) d\tau = \frac{1}{t} \left(\frac{X_{i}^{2}}{2} + \frac{L(t)}{2} \frac{V_{j}^{2}}{2} \right)$$

R =
$$\lim_{t \to \infty} \frac{E[M(t)]}{t} \frac{E[X^2]}{2} + \frac{L(t)}{t} \frac{E[V^2]}{2}$$

- Where L(t) is the number of vacations taken up to time t
- M(t) is the number of customers served by time t

Average Residual Service Time (with vacations)

- As t-> ∞ , M(t)/t -> λ and L(t)/t -> λ_v = vacation rate
- Now, let I = 1 if system is on vacation and I = 0 if system is busy
- By Little's Theorem we have,
 - E[I] =E[#vacations] = P(system idle) = 1- ρ = λ_v E[V]
 - => $λ_v$ = (1-ρ)/E[V]
- Hence,

$$R = \lambda \frac{E[X^{2}]}{2} + \frac{(1-\rho)E[V^{2}]}{2E[V]}$$

remember $W = R/(1-\rho)$

$$W = \lambda \frac{E[X^{2}]}{2(1-\rho)} + \frac{E[V^{2}]}{2E[V]}$$

Example: Slotted M/D/1 system

Each slot = one packet transmission time = $1/\mu$

- Transmission can begin only at start of a slot
- If system is empty at the start of a slot, server not available for the duration of the slot (vacation)

•
$$\mathbf{E[X]} = \mathbf{E[v]} = 1/\mu$$

• $\mathbf{E[X^2]} = \mathbf{E[v^2]} = 1/\mu^2$

$$= W_{M/D/1} + E[X]/2$$

$$= W_{M/D/1} + E[X]/2$$

Notice that an average of 1/2 slot is spent waiting for the start of a slot

FDM EXAMPLE

• Assume m Poisson streams of fixed length packets of arrival rate λ/m each multiplexed by FDM on m subchannels. Total traffic = λ

Suppose it takes m time units to transmit a packet, so μ =1/m.

The total system load: $\rho = \lambda$

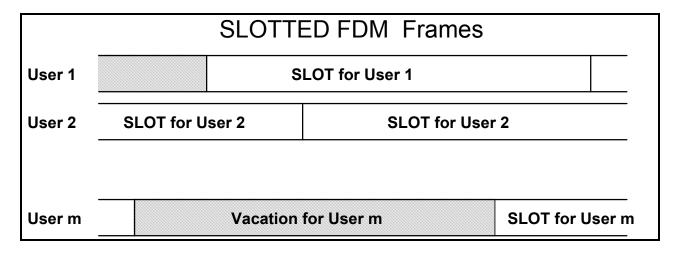
User 1	IDLE	SLOT for User 1	
User 2		IDLE	

• We have an M/D/1 system $\{ W=\lambda E[x2]/2(1-\rho) \}$

$$\mathbf{W}_{\text{FDM}} = \frac{(\lambda/m) \, m^2}{2 \, (1-\rho)} = \frac{\rho \, m}{2 \, (1-\rho)}$$

Slotted FDM

 Suppose now that system is slotted and transmissions start only on m time unit boundaries.



- This is M/D/1 with <u>vacations</u>
 - Server goes on vacation for m time units when there is nothing to transmit
 E[V] = m; E[V²] = m².

$$W_{SFDM} = W_{FDM} + E[V^2]/2E[V]$$
$$= W_{FDM} + m/2$$

TDM EXAMPLE

TDM Frame						
slot m	slot 1	slot 2		slot m		

 TDM with one packet slots is the same (a session has to wait for its own slot boundary), so

$$W = R/(1-\rho)$$

R =
$$\lambda = \frac{E[X^2]}{2} + \frac{(1-\rho)E[V^2]}{2E[V]}$$

$$W = \lambda = \frac{E[X^{2}]}{2(1-\rho_{5})} + \frac{E[V^{2}]}{2E[V]}$$

TDM EXAMPLE

• Therefore, $W_{TDM} = W_{FDM} + m/2$

Adding the packet transmission time, TDM comes out best because transmission time = 1 instead of m.

$$T_{FDM} = [W_{FDM}] + m$$
 $T_{SFDM} = [W_{FDM} + m/2] + m$
 $T_{TDM} = [W_{FDM} + m/2] + 1$
 $= T_{FDM} - [m/2 - 1]$