Lectures 10 & 11

Reservations Systems M/G/1 queues with Priority

Eytan Modiano MIT

RESERVATION SYSTEMS

- Single channel shared by multiple users
- Only one user can use the channel at a time
- Need to coordinate transmissions between users
- Polling systems
 - Polling station polls the users in order to see if they have something to send
 - A scheduler can be used to receive and schedule transmission requests

R1	D1	R2	D2	R3	D3	R1	D1
----	----	----	----	----	----	----	----

- Reservation interval (R) used for polling or making reservations
- Data interval (D) used for the actual data transmission

Reservations and polling systems

- Gated system users can transmit only those packets that arrived prior to start of reservation interval
 - E.g., explicit reservations
- Partially gated system Can transmit all packets that arrived before the start of the data interval
- Exhaustive system Can transmit all packets that arrive prior to the end of the data interval
 - E.g., token ring networks
- Limited service system only one (K) packets can be transmitted in a data interval

Single user exhaustive systems

- Let V_i be the duration of the jth reservation interval
 - Assume reservation intervals are iid
- Consider the ith data packet:

$$\begin{split} \textbf{E[W_i]} &= \textbf{R}_i + \textbf{E[N_i]}/\mu \\ \textbf{R}_i &= \text{residual time for current packet or reservation interval} \\ \textbf{N}_i &= \textbf{Number of packets in queue} \end{split}$$

Identical to M/G/1 with vacations

$$W = \frac{\lambda E[X^2]}{2(1-\rho)} + \frac{E[V^2]}{2E[V]}$$

When V = A (constant)
$$\Rightarrow W = \frac{\lambda E[X^2]}{2(1-\rho)} + \frac{A}{2}$$

Single user gated system (e.g.,reservations)

$$E[W_i] = E[R_i] + E[N_i]E[X] + E[V]$$

$$W = R + N_Q E[X] + E[V]$$

$$W = (R + E[V])/(1-\rho)$$
(NQ=\lambda W)

SINGLE USER RESERVATION SYSTEM

The residual service time is the same as in the vacation case,

$$R = \lambda \frac{E[X^{2}]}{2} + \frac{(1-\rho)E[V^{2}]}{2E[V]}$$

• Hence,

$$W = \lambda \frac{E[X^2]}{2(1-\rho)} + \frac{E[V^2]}{2E[V]} + \frac{E[V]}{1-\rho}$$

If all reservation intervals are of constant duration A,

$$W = \lambda \frac{E[X^{2}]}{2(1-\rho)} + \frac{A}{1-\rho} + \frac{A}{2}$$

Multi-user exhaustive system

- Consider m incoming streams of packets, each of rate λ /m
- Service times {X_n} are IID and independent of arrivals with mean 1/μ, second moment E[X²].
- Server serves all packets from stream 0, then all from stream 1, ..., then all from m-1, then all from 0, etc.
- There is a reservation interval of fixed duration V_i = V (for all i)

Multi-user exhaustive system

- Consider arbitrary packet i
- Let Y_i = the duration of whole reservation intervals during which packet i must wait (E[Y_i] = Y)

$$W = R + \rho W + Y$$

- Packet i may arrive during the reservation or data interval of any of the m streams with equal probability (1/m)
 - If it arrives during its own interval Y_i = 0, etc..., hence,

$$Y_i = \{iV \quad w.p. \quad 1/m \quad 0 \le i < m$$

$$Y = E[Y_i] = \frac{V}{m} \sum_{i=0}^{m-1} i = \frac{V(m-1)}{2}$$

$$W = \frac{R+Y}{(1-\rho)}, \qquad R = \frac{(1-\rho)V^2}{2V} + \frac{\lambda E[X^2]}{2}$$

Multi-user exhaustive system

$$W = \frac{(1-\rho)V + \lambda E[X^2] + V(m-1)}{2(1-\rho)},$$

$$= \frac{V}{2} + \frac{V(m-1)}{2(1-\rho)} + \frac{\lambda E[X^2]}{2(1-\rho)} = \frac{\lambda E[X^2]}{2(1-\rho)} + \frac{V(m-\rho)}{2(1-\rho)}$$

In text, V = A/m and hence,

$$W = \frac{A}{2m} + \frac{A(m-1)}{2m(1-\rho)} + \frac{\lambda E[X^2]}{2(1-\rho)} = \frac{\lambda E[X^2]}{2(1-\rho)} + \frac{A(1-\rho/m)}{2(1-\rho)}$$

Gated System

 When a packet arrives during its own reservation interval, it must wait m full reservation intervals

$$Y_i = \{iV \quad w.p. \quad 1/m \quad 1 \le i \le m\}$$

$$Y = E[Y_i] = \frac{V}{m} \sum_{i=1}^{m} i = \frac{V(m+1)}{2}$$

$$W = \frac{V}{2} + \frac{V(m+1)}{2(1-\rho)} + \frac{\lambda E[X^2]}{2(1-\rho)}$$

With V = A/m,

$$\frac{\lambda E[X^2]}{2(1-\rho)} + \frac{A}{2m} + \frac{A(1+1/m)}{2(1-\rho)} = \frac{\lambda E[X^2]}{2(1-\rho)} + \frac{A}{2} \left(\frac{1+(2-\rho)/m}{(1-\rho)}\right)$$

M/G/1 Priority Queueing

Priority classes 1, ..., n (class 1 highest and n lowest)

$$\lambda_k = arrival rate for class k$$

$$\mu_k = service \ rate for class k$$

$$E[X_k^2] = \sec ond \ moment \ of \ service time(class k)$$

 Non-preemptive system: Customer receiving service is allowed to complete service without interruption

$$W_{k} = \frac{\sum_{i=1}^{i=n} \lambda_{i} E[X_{i}^{2}]}{2(1 - \rho_{1} - \dots - \rho_{k-1})(1 - \rho_{1} - \dots - \rho_{k})}, \quad \rho_{i} = \frac{\lambda_{i}}{\mu_{i}}$$

 Notice that the waiting time of high priority traffic is affected by lower priority traffic

Preemptive-resume systems

- When a higher priority customer arrives, lower priority customer is interrupted
 - Service is resumed when no higher priority customers remain
 - Notice that the delay of high priority customers is no longer affected by that of lower priority customers
 - Preemption is not always practical and usually involves some overhead
- Consider a class k arrival and let,
 - W_k = waiting time for customers of class k or higher priority classes (1..K-1) already in the system

 R_k = residual time for class k or higher customers Notice that lower priority customers in service don't affect W_k because they are preempted

- W_I = Waiting time for higher priority customers that arrive while priority k customer is already in the system
- T_K = Average system time for priority K customer

$$T_k = W_k + W_l + 1/\mu_{\square}$$

Preemptive-resume, continued...

$$W_{k\Box} = \frac{R_{k\Box}}{1 - \rho_1 - \dots - \rho_k}, \ R_{k\Box} = \frac{\sum_{i=1}^{k\Box} \lambda_i E[X_i^2]}{2}$$

$$W_{I\square} = \sum_{i \equiv 1}^{k \equiv 1} (\lambda_i / \mu_i) T_{k\square} = \sum_{i \equiv 1}^{k \equiv 1} (\rho_i) T_{k\square}$$

$$T_{k\square} = \frac{1}{\mu_{k\square}} + \frac{R_{k\square}}{1 - \rho_1 - \dots - \rho_{k\square}} + T_{k\square} \sum_{i \equiv 1}^{k \equiv 1} \rho_{i\square}$$

$$T_{k\Box} = (\frac{1}{\mu_{k\Box}}) \frac{(1 - \rho_1 - \dots - \rho_k) + R_{k\Box}}{(1 - \rho_1 - \dots - \rho_{k\Box 1})(1 - \rho_1 - \dots - \rho_k)}$$

Notice independence of lower priority traffic

Stability of Queueing Systems

- Possible Definitions
 - Average Delay is bounded

Delay is finite with probability 1

Existence of a stationary occupancy distribution

Occupancy does not drift to infinity

E(delay) < Infinity

Example: M/M/1 queue

$$T = \frac{1}{\mu - \lambda} < \infty \ \forall \ \lambda < \mu \Rightarrow \rho < 1$$

• Example: M/G/1 queue

$$T = \frac{1}{\mu} + \frac{\lambda E[X^2]}{2(1-\rho)} < \infty \quad if \ (\rho < 1) \ and \ (E[X^2] < \infty)$$

P(Delay< Infinity) = 1

- Slightly weaker definition than E[delay] < infinity
- P(delay < infinity) = 1 even if E(delay) = infinity
- Example:

$$f_{D}(d) = \frac{2}{\pi(1+d^{2})}, d > 0$$

$$E[Delay] = \int_{0}^{\infty} \frac{2d}{\pi(1+d^{2})} = \frac{Log[1+d^{2}]}{\pi} \Big|_{0}^{\infty} \Rightarrow \infty$$

$$P[Delay < x] = \int_0^x \frac{2}{\pi(1+d^2)} = \frac{2\arctan(x)}{\pi} \xrightarrow[x \to \infty]{1}$$

- In general it can be shown that for any G/G/1 queue
 - Arrival and service time distributions may even be correlated!

If $\lambda < \mu$, P(delay < Infinity) = 1 even if E(delay) not finite

Existence of a stationary occupancy distribution

- Irreducible and Aperiodic Markov chain
 - Pj > 0 for all states j => all states are visited infinitely often
- Drift: $D_i = E[X_{n+1} X_n \mid X_n = i] = \sum_{k=i}^{\infty} k P_{(i,i+k)}$
- When in state I,

 $D_i > 0 \Rightarrow$ state tends to increase

D_i < 0 => state tends to decrease

- Intuitively, we don't want the state to drift to infinity, hence for large enough states the drift better get negative!
- Lemma: If D_i < infinity for all i and for some δ > 0 and i' > 0,

 $D_i < -\delta$ for all i > i', then the Markov chain has a stationary distribution

Irriducible: all states communicate (I.e., positive probability of getting from every state to every other state) Periodic state: self transitions are possible only after a number of transitions (n) that is a multiple of some constant d (I.e., n = 3, 6, 9, ...). Aperiodic => no state is periodic

Examples

M/M/1

$$D_i = E[X_{n+1} - X_n \mid X_n = i] = 1(\lambda \delta) - 1(\mu \delta) = (\lambda - \mu)\delta$$

$$D_i < 0 \Rightarrow \lambda < \mu$$

• M/M/m

$$D_{i} = E[X_{n+1} - X_{n} \mid X_{n} = i] = 1(\lambda \delta) - 1(m\mu \delta) \quad \forall i \ge m$$

$$D_{i} < 0 \Rightarrow \lambda < m\mu \quad \forall i \ge m$$

M/M/Inf

$$D_{i} = E[X_{n+1} - X_{n} | X_{n} = i] = 1(\lambda \delta) - 1(i\mu \delta)$$

$$D_{i} < 0 \Rightarrow \lambda < i\mu$$

 $\begin{array}{c}
\lambda\delta \\
i \\
(\iota+1)\mu\delta
\end{array}$

For any $\lambda < \infty$ and $1/\mu < \infty \exists i$ s.t., $D_i < 0 \forall i > i$