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Burke’s Theorem

* An interesting property of an M/M/1 queue, which greatly
simplifies combining these queues into a network, is the
surprising fact that the output of an M/M/1 queue with arrival rate A
is a Poisson process of rate A

— This is part of Burke's theorem, which follows from reversibility

* A Markov chain has the property that

— P[future | present, past] = P[future | present]

Conditional on the present state, future states and past states are
independent

P[past | present, future] = P[past | present]

= P[Xn=j IXn+1 =i, Xn+2=i2""] = P[Xn=] | Xn+1=i] - P*ij
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Burke’s Theorem (continued)

* The state sequence, run backward in time, in steady state, is a
Markov chain again and it can be easily shown that

P;P*; = PP; (e.g., MIM/1  (p )A=(p,.1)1L)

* A Markov chain is reversible if P*ij = Pij

— Forward transition probabilities are the same as the backward
probabilities

— If reversible, a sequence of states run backwards in time is
statistically indistinguishable from a sequence run forward

* Achain is reversible iff p,P,=p,P;

* All birth/death processes are reversible
— Detailed balance equations must be satisfied
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Implications of Burke’s Theorem

l L L Arrivals

|

<+— time

l Departures

* Since the arrivals in forward time form a Poisson process, the
departures in backward time form a Poisson process

* Since the backward process is statistically the same as the forward
process, the (forward) departure process is Poisson

* By the same type of argument, the state (packets in system) left by a
(forward) departure is independent of the past departures

— In backward process the state is independent of future arrivals



NETWORKS OF QUEUES
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* The output process from an M/M/1 queue is a Poisson process of
the same rate A as the input

* Is the second queue M/M/1?
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Independence Approximation

gKIeinrockz

* Assume that service times are independent from queue to queue

— Not a realistic assumption: the service time of a packet is determined
by its length, which doesn't change from queue to queue

X4
Link 3,4

Xy

* X, = arrival rate of packets along path p

* Let ), = arrival rate of packets to link (ij) 4; = ZXP

P traverses link (i, ])

* ;= service rate on link (i,])
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Kleinrock approximation

* Assume all queues behave as independent M/M/1 queues

A.
_ i
Ny=
* N = Ave. packets in network, T = Ave. packet delay in network
A N
N = Z ]vij = - ’ I'=—
ij Hy =4 A

A= ZX » = total external arrival rate
all paths p

* Approximation is not always good, but is useful when accuracy of
prediction is not critical

— Relative performance but not actual performance matters
— E.g., topology design



Slow truck effect
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* Example of bunching from slow truck effect
— long packets require long service at each node
— Shorter packets catch up with the long packets

* Similar to phenomenon that we experience on the roads

— Slow car is followed by many faster cars because they
catch up with it
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Jackson Networks

* Independent external Poisson arrivals
* Independent Exponential service times
— Same job has independent service time at different queues
* Independent routing of packets
— When a packet leaves node i it goes to node j with probability P;;
— Packet leaves system with probability | —:Zj Pl.j
— Packets can loop inside network

* Arrival rate at node i,

A = +:Zk e
/ AN
External Internal arrivals from
arrivals Other nodes

— Set of equations can be solve to obtain unique A;’s
— Service rate at node i = ;
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Jackson Network (continued)
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* Customers are processed fast (u>>A)=

* Customers exit with probability (1-P)
— Customers return to queue with probability P
—  A=r+ PA=> A= r/(1-P)

* When P is large, each external arrival is followed by a burst of
internal arrivals

— Arrivals to queues are not Poisson
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Jackson’s Theorem

\
We define the state of the system to be 77 = (nl,n2 L n,)

where n; is the number of customers at node i
Jackson's theorem:

V i=k i=k N ll-
Py=]12m)=11p"0-p),  where p,==
i1 i1

i

That is, in steady state the state of node i (n;) is independent of the
states of all other nodes (at a given time)

— Independent M/M/1 queues

— Surprising result given that arrivals to each queue are neither
Poisson nor independent

— Similar to Kleinrock’s independence approximation
— Reversibility
Exogenous outputs are independent and Poisson
The state of the entire system is independent of past exogenous departures



Example
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