
Lecture 2

6.263/16.37

The Data Link Layer: Framing and Error Detection

Eytan Modiano
MIT, LIDS

Eytan Modiano
Slide 1

Data Link Layer (DLC)

• Responsible for reliable transmission of packets over a link

– Framing: Determine the start and end of packets (sec 2.5)

– Error Detection: Determine when a packet contains errors (sec 2.3)

– Error recovery: Retransmission of packets containing errors (sec 2..4)

DLC layer recovery

May be done at higher layer

Eytan Modiano
Slide 2

Framing

010100111010100100101010100111000100

Where is the DATA??

• Three approaches to find frame and idle fill boundaries:

1) Character oriented framing

2) Length counts
- fixed length

3) Bit oriented protocols (flags)

Eytan Modiano
Slide 3

Character Based Framing

Frame

SYN Packet SYN Header STX SYN SYN CRC ETX

SYN is synchronous idle

STX is start text

ETX is end text

•	 Standard character codes such as ASCII and EBCDIC contain
special communication characters that cannot appear in data

• Entire transmission is based on a character code

Eytan Modiano
Slide 4

Issues With Character Based Framing

• Character code dependent

– How do you send binary data?

• Frames must be integer number of characters

• Errors in control characters are messy

NOTE: Primary Framing method from 1960 to ~1975

Eytan Modiano
Slide 5

Length field approach (DECNET)

• Use a header field to give the length of the frame (in bits or bytes)
–	 Receiver can count until the end of the frame to find the start of the

next frame
–	 Receiver looks at the respective length field in the next packet

header to find that packet’s length

• Length field must be log2 (Max_Size_Packet) + 1 bits long
– This restricts the packet size to be used

• Issues with length counts
– Difficult to recover from errors
– Resynchronization is needed after an error in the length count

Eytan Modiano
Slide 6

Fixed Length Packets (e.g., ATM)

• All packets are of the same size
– In ATM networks all packets are 53 Bytes

• Requires synchronization upon initialization

• Issues:
–	 Message lengths are not multiples of packet size

Last packet of a message must contain idle fill (efficiency)

– Synchronization issues

– Fragmentation and re-assembly is complicated at high rates

Eytan Modiano
Slide 7

Bit Oriented Framing (Flags)

•	 A flag is some fixed string of bits to indicate the start and end of a
packet

–	 A single flag can be used to indicate both the start and the end of a
packet

•	 In principle, any string could be used, but appearance of flag must
be prevented somehow in data

– Standard protocols use the 8-bit string 01111110 as a flag
– Use 01111111..1110 (<16 bits) as abort under error conditions
– Constant flags or 1's is considered an idle state

• Thus 0111111 is the actual bit string that must not appear in data

• INVENTED ~ 1970 by IBM for SDLC (synchronous data link protocol)

Eytan Modiano
Slide 8

BIT STUFFING (Transmitter)

• Used to remove flag from original data

•	 A 0 is stuffed after each consecutive five 1's in the original frame

Stuffed bits

0 0 0 0
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

Original frame

• Why is it necessary to stuff a 0 in 0111110?
– If not, then

0111110111 -> 0111110111
011111111 -> 0111110111

– How do you differentiate at the receiver?

Eytan Modiano
Slide 9

DESTUFFING (Receiver)

• If 0 is preceded by 011111 in bit stream, remove it

• If 0 is preceded by 0111111, it is the final bit of the flag.

Example: Bits to be removed are underlined below

1001111101100111011111011001111110
flag

Eytan Modiano
Slide 10

Overhead

•	 In general with a flag 01K0 the bit stuffing is require whenever 01k-1

appears in the original data stream
• For a packet of length L this will happen about L/2k times

E{OH} = L/ 2k + (k+ 2) bits

• For 8 bit flag OH ~ 8 + L/64
– For large packets efficiency ~ 1 - 1/64 = 98.5 (or 1.5% overhead)

• Optimal flag length
– If packets are long want longer flag (less stuffing)
– If packets are short want short flag (reduce overhead due to flag)

Kopt ~ log2(L)

Eytan Modiano
Slide 11

Framing Errors

• All framing techniques are sensitive to errors

–	 An error in a length count field causes the frame to be terminated at the wrong
point (and makes it tricky to find the beginning of the next frame)

– An error in DLE, STX, or ETX causes the same problems

–	 An error in a flag, or a flag created by an error causes a frame to disappear or
an extra frame to appear

•	 Flag approach is least sensitive to errors because a flag will eventually
appear again to indicate the end of a next packet

– Only thing that happens is that an erroneous packet was created
– This erroneous packet can be removed through an error detection technique

Eytan Modiano
Slide 12

Error detection techniques

• Used by the receiver to determine if a packet contains errors
•	 If a packet is found to contain errors the receiver requests the

transmitter to re-send the packet

• Error detection techniques

–	 Parity check
single bit
Horizontal and vertical redundancy check

– Cyclic redundancy check (CRC)

Eytan Modiano
Slide 13

Effectiveness of error detection technique

•	 Effectiveness of a code for error detection is usually measured by
three parameters:

1) minimum distance of code (d) (min # bit errors undetected)
The minimum distance of a code is the smallest number of errors that can map
one codeword onto another. If fewer than d errors occur they will always
detected. Even more than d errors will often be detected (but not always!)

2) burst detecting ability (B) (max burst length always detected)

3) probability of random bit pattern mistaken as 	error free (good
estimate if # errors in a frame >> d or B)

– Useful when framing is lost

– K info bits => 2k valid codewords

–	 With r check bits the probability that a random string of length k+r
maps onto one of the 2k valid codewords is 2k/2k+r = 2-r

Eytan Modiano
Slide 14

Parity check codes

k Data bits r Check bits

• Each parity check is a modulo 2 sum of some of the data bits

Example:

c1 = x1 + x2 + x3
c2 = x2 + x3 + x4
c3 = x1 + x2 + x4

Eytan Modiano
Slide 15

Single Parity Check Code

• The check bit is 1 if frame contains odd number of 1's; otherwise it is 0

1011011 -> 1011011 1

1100110 -> 1100110 0

• Thus, encoded frame contains even number of 1's
• Receiver counts number of ones in frame

– An even number of 1’s is interpreted as no errors
–	 An odd number of 1’s means that an error must have occured

A single error (or an odd number of errors) can be detected
An even number of errors cannot be detected
Nothing can be corrected

• Probability of undetected error (independent errors)

P(un det ected) = ∑


N 

 pi (1 − p) N −i N = packet size
i even  i  p = error prob.

Eytan Modiano
Slide 16

Horizontal and Vertical Parity

1 0 0 1 0 1 0 1
0 1 1 1 0 1 0 0
1 1 1 0 0 0 1 0
1 0 0 0 1 1 1 0
0 0 1 1 0 0 1 1

1 	 0 1 1 1 1 1 0

Vertical checks

1 0 0 1 0 1 0 1

Horizontal 0 1 1 1 0 1

1
0 0

checks 1 1 0 1 0 0 0

1 0 0 0 1 1 1 0

0 0 1 1 0 0 1 1

1 0 1 1 1 1 1 0

• The data is viewed as a rectangular array (i.e., a sequence of words)

•	 Minimum distance=4, any 4 errors in a rectangular configuration is
undetectable

Eytan Modiano
Slide 17

Cyclic Redundancy Checks (CRC)

M R M = info bits
R = check bits

T T = codeword

T = M 2r + R

• A CRC is implemented using a feedback shift register

Bits in Bits out

k Data bits r Check bits

Eytan Modiano
Slide 18

Cyclic redundancy checks

T = M 2r + R

• How do we compute R (the check bits)?
– Choose a generator string G of length r+1 bits
– Choose R such that T is a multiple of G (T = A*G, for some A)
– Now when T is divided by G there will be no remainder => no errors
– All done using mod 2 arithmetic

T = M 2r + R = A*G => M 2r = A*G + R (mod 2 arithmetic)

Let R = remainder of M 2r/G and T will be a multiple of G

• Choice of G is a critical parameter for the performance of a CRC

Eytan Modiano
Slide 19

Example

r = 3, G = 1001
M = 110101 => M2r = 110101000

110011
1001 110101000

1001
Modulo 2

01000 Division1001
0001100

1001
01010
1001
011 = R (3 bits)

Eytan Modiano
Slide 20

Checking for errors

• Let T’ be the received sequence
• Divide T’ by G

– If remainder = 0 assume no errors
– If remainder is non zero errors must have occurred

Example: 1001Send T = 110101011 110101011

Receive T’ = 110101011
(no errors)

No way of knowing how many
errors occurred or which bits are
In error

1001
01000
1001
0001101

1001
01001
1001
000 => No errors

Eytan Modiano
Slide 21

Mod 2 division as polynomial division

Eytan Modiano

Slide 22

Implementing a CRC

Eytan Modiano

Slide 23

Performance of CRC

•	 For r check bits per frame and a frame length less than 2r-1, the
following can be detected

1) All patterns of 1,2, or 3 errors (d > 3)
2) All bursts of errors of r or fewer bits
3) Random large numbers of errors with prob. 1-2-r

• Standard DLC's use a CRC with r=16 with option of r=32

– CRC-16, G = X16 + X15 + X2 +1 = 11000000000000101

Eytan Modiano
Slide 24

Physical Layer Error Characteristics

•	 Most Physical Layers (communications channels) are not well described
by a simple BER parameter

•	 Most physical error processes tend to create a mix of random & bursts of
errors

•	 A channel with a BER of 10-7 and a average burst size of
1000 bits is very different from one with independent random errors

• Example: For an average frame length of 104 bits
– random channel: E[Frame error rate] ~ 10-3

– burst channel: E[Frame error rate] ~ 10-6

• Best to characterize a channel by its Frame Error Rate

• This is a difficult problem for real systems

Eytan Modiano
Slide 25

