
Thm: (Wald) Let {Xi; i ≥ 1} be IID with a semi-invariant 

MGF γ(r) = ln(E [exp(rX)]) that exists for (r− < 0 < r+). 
Let {Sn; n ≥ 1 be the RW with Sn = X1 + · · · + Xn. If J is

the trial at which Sn first crosses α > 0 or β < 0, 

E [exp(rSJ − Jγ(r)] = 1 for r ∈ (r , r+) −

Corollary: If X < 0 and γ(r∗) = 0 for 0 < r
∗, then 

Pr{SJ ≥ α} ≤ exp(−αr
∗) 

Pf: The Wald identity says E [exp(r∗SJ ] = 1, so this follows 

from the Markov inequality. 

This is valid for all lower thresholds and also for no lower 

threshold, where it is better stated as 

Pr 

�
�
{Sn ≥ α

n 
}
� 

 ≤ exp(−r
∗
α) 

This is stronger (for the case of threshold crossing) than 

the Chernoff bound, which says that Pr{Sn ≥ α} ≤ exp −r
∗
α 

for all n. 
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Review of hypothesis testing: View a binary hypothesis 

as a binary rv H with pH(0) = p0 and pH(1) = p1. 

We observe {Yn; n ≥ 1}, which, conditional on H = � is IID 

with density fY H(y|�). Define the likelihood ratio |

�n fY
Λ

|H(yi|0)
( n
�y ) = i

 fY (
i |H yi|1)=1 i

{ | n} p0f� n (�yn  0) Pr H=0  �y  Y |H p
= 

|
0 = Λ( n

�y ). 
Pr{H=1 | �yn} p1f� n (�yn | 1) p

Y | 1 H

� 
> p1/p0 ; select ˆn h=0 

MAP rule: Λ(�y ) ≤ p1/p0 ; select ĥ=1. 
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Define the log likelihood ratio as 

Λ( n
LLR = ln[ �y )] = 

i

�n  fYi|H(yi|0) 
ln 

f  Y (y 1)=1 i|H i|

�n  fY (yi
sn =   =

i H
zi zi  

|

where ln 

|0) 


=1 f H(yi 1)
i Yi

|
|


Conditional on H = 1, {Sn; n ≥ 1} is a RW with Sn =


Z1 + · · · Zn, where each Zi is a function of Yi. The Zi,


given H = 1 are then IID. 

 


 fY H(y  
i 0) 

γ (r) = ln 

�

f (y 1)  


|

| exp



r ln i|  1  Yi|H i dy 
f 


��
Yi|H
 (yi|1)
 




 




 ln 1f −r = ( |1)fr 
y 0) 

Y i (
 
 yi dy
i

| |



|H Yi H

�

Note that γ1(1) = 0, so ∗ 
r = 1. 
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0 r
∗ = 1 

γ1(ro) + (1−ro) ln(η)/n 

slope = ln(η)/n 
γ(ro) 

γ1(ro) − ro ln(η)/n 

For fixed n, a threshold rule says choose Ĥ = 0 if Sn ≥ ln η. 

Thus, given H = 1, an error occurs if Sn ≥ ln η. From the 

Chernoff bound, 

Pr{e | H=1} ≤ exp(nγ1(ro) − ro ln η) 

Given H = 0, a similar argument shows that 

Pr{e | H=0} ≤ exp(nγ1(ro) + (1 − ro) ln η) 

A better strategy is sequential decisions. For the same 

pair of RW’s, continue trials until either Sn ≥ α or Sn ≤ β 

where α > 0 and β < 0. 
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Given H = 1, {Sn; n ≥ 1} is a random walk. Choose some 

α > 0 and β < 0 and let J be a stopping time, stopping 

when first Sn ≥ α or Sn ≤ β. 

If SJ ≥ α, decide Ĥ = 0 and if SJ ≤ β, decide Ĥ = 1. 
Conditional on H = 1, an error is made if SJ ≥ α. Then 

Pr{e | H=1} = Pr{SJ ≥ α | H=1} ≤ exp[−αr
∗] 

where r
∗ is the root of γ(r) = ln E [exp(rZ) | H = 1], i.e., 

r
∗ = 1. 

� 
 

fY H(
 

y 0)
γ(r) = ln fY y

| |
y 

|H( |1) exp r ln 
fY 



|H(y|1)
 

= ln [f (y 1)]1−r[f (y 0)]r 
dy 

 

�

Y |H Y |H
y 

| |
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Choose apriori’s p0 = p1. Then at the end of trial n 

Pr{H=0 | Sn} 1 − Pr H
= exp(Sn); 

{ =1 | Sn} 
= exp(Sn)

Pr{H=1 | Sn} Pr{H=1 | Sn} 

exp(−Sn)
Pr{H=1 | Sn} = 

1 + exp(−Sn) 

This is the probability of error if a decision ĥ = 0 is made 

at the end of trial n. Thus deciding ĥ = 0 on crossing α 

guarantees that Pr{e | H=1} ≤ exp −α. 

As we saw last time, the cost of choosing α to be large 

is many trials under H = 0. In particular, the stopping 

time J satisfies 

E [SJ | H=0] α + E [overshoot 
E [J | H=0] = 

| H=0] 
 

E [Z | H=0] 
≈

E [Z | H=0] 
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Wald’s identity with zero-mean rv’s 

If we take the first 2 derivatives of Wald’s identity at 

r = 0, we get Wald’s equality and a useful result for 

zero-mean rv’s. 
 d 

E [exp(rSJ − Jγ(r)] = E 
�
[SJ − Jγ

�(r)] exp(rSJ − Jγ(r))
dr 

�

d  
E [exp(rSJ − Jγ(r)]

dr 

� �

2 
d

�

��� = E SJ  
r=0 

− JX = 0; (Wald eq.)

 
2 E 2 [exp(rSJ − Jγ(r)]

���� = E 
�

� S  = 0; if  = 0 2 J X
J

r=0 
− σ

�
X

dr

For zero-mean simple RW with threshold at α > 0 and 

β < 0, we have J = −βα 
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Martingales 

A sequence {Zn; n ≥ 1} of rv’s is a martingale if E [|Zn|] < ∞ 
for all n ≥ 1 and 

E 
�  
Zn | Zn−1, Zn−2, . . . , Z1 = Zn−1 (1) 

The condition E [|Zn|] < ∞ is almost 

�

a mathematical fine 
point, and we mostly ignore it here. The condition (1) 
appears to be a very weak condition, but it leads to 
surprising applications. In times of doubt, write (1) as 

E 
�  
Zn | Zn−1=zn−1, . . . , Z1=z1 = zn−1 

for all sample values zn−1, zn 2

�

− , . . . , z1 

Lemma: For a martingale, {Zn; n ≥ 1}, and for n > i ≥ 1, 

E 
�  
Zn | Zi, Zi−1 . . . , Z1

�
= Zi 

Pf: To start, we show that E [Z3 | Z1] = Z1. Recall the 
meaning of E [X] = E [E [X|Y ]]. Then 

E [Z3 | Z1] = E [E [Z3 | Z2, Z1] | Z1] 
9 

E [Z3 | Z1] = E [E [Z3 | Z2, Z1] | Z1] = E [Z2|Z1] = Z1 

In the same way, 
� � � �   

E Zi+2 | Zi, . . . , Z1 = E E Zi+2 | Zi+1, . . . , Z1 

�
| Zi, . . . , Z1 

= E 
�
Zi+1 | Zi, . . . , Z1 

� 
= Zi 

�

After more of the same, E [Zn | Zi, . . . , Z1] = Zi. 

The most important special case is E [Zn | Z1] = Z1, and 

thus E [Zn] = E [Z1]. 
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1) Zero-mean random walk: Let Zn = X1 + · · · Xn where

{Xi; i ≥ 1} are IID and zero mean. 

E 
� 	  
Zn | Zn 1, . . . , Z1

�
= E 

�
Xn + Zn−1 | − Zn−1, . . . , Z1

= E [Xn] + Zn−1 = Zn−1. 

�

2) Sums of ‘arbitrary’ dependent rv’s: Suppose {Xi; i ≥ 1}
satisfy E 

�  
Xi | Xi 1, Xi 2, . . . , X1 = 0. Then − − {Zn; n ≥ 1}

where Zn = X1 + · · · + Xn is a ma

�

rtingale. 

This can be taken as an alternate definition of a martin­

gale. We can either start with the sums Zn or with the 

differences between successive sums. 

11 

Simple Examples of martingales 

3) Let Xi = UiYi where {Ui; i ≥ 1} are IID, equiprobable 

±1. The Yi are non-negative and independent of the Ui 

but otherwise arbitrary. Then 

E 
�  
Xn | Xn  −1, . . . , X1 = 0 

Thus {Zn; n ≥ 1} where Zn = X1 + 

�

· · · Xn is a martingale. 

4) Product form martingales. Suppose {Xi; i ≥ 1} is a 

sequence of IID unit-mean rv’s. Then {Zn; n ≥ 1} where 

Zn = X1X2 · · · Xn is a martingale. 

 
E 

�
Zn | Zn  −1, . . . , Z1

�
= E

�
XnZn− | Z , . . . , Z

= E [Xn] E 

�

= E Zn−1 

�
1 n−1 1

 
Z 1 | Z

�
n−

�
n−1, . . . , Z1

 
| Zn−1 = Zn−1. 

�
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5) Special case of product form martingale: let Xi be IID 

and equiprobably 2 or 0. 

Pr{Zn = 2n} = 2−n; Pr{ n
Zn = 0} = 1 − 2− ; E [Zn] = 1. 

Thus limn Zn = 0 WP1 but E [Zn] = 1 for all n 

6) Recall the branching process where Xn is the number 

of elements in gen n and X
X

n 
n+1 = 

i=1 Yi,n where the Yi,n 

are IID. 

�

Let Zn = n
Xn/Y , i.e., {Zn; n ≥ 1} is a scaled down branch­

ing process. 

E 
�  

 Xn Y Xn 1
Zn | Zn 1, . . . , Z1

�
= E 

�
n | ,  − Xn−1 . . . , X1 

�
= n

− = Zn−1.
Y Y 

Thus this is a martingale. 
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Submartingales and supermartingales 

These are sequences {Zn; n ≥ 1} with E [|Zn|] < ∞ like 

martingales, but with inequalities instead of equalities. 

For all n ≥ 1, 

E 
�
Zn | Zn−1, . . . , Z1

� 

 
≥ Zn−1 submartingale 

E 
�
Zn | Zn 1, . . . , Z1

�
≤  − Zn rtingale−1 superma

We refer only to submartingales in what follows, since 

the supermartingale case results from replacing Zn with 

−Zn. 

For submartingales, 

E [Zn | Zi, . . . , Z1] ≥ Zi for all n > i > 0 

E [Zn] ≥ E [Zi] for all n > i > 0 
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h(x) 
h(x) = |x

❅

|
h(x1) + �

c(x − x  �1) ❅ 
❅ �

c = h�(x1)   
❅ � 

❅ � 
❅� 

x1 = E [Z] x 

Convex functions 

A function h(x), R → R, is convex if each tangent to the 

curve lies on or below the curve. The condition h��(x) ≥ 0 

is sufficient but not necessary. 

Lemma (Jensen’s inequality): If h is convex and Z is a 

rv with finite expectation, then 

h(E [Z]) ≤ E [h(Z)] 
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Jensen’s inequality can be used to prove the following 

theorem. See Section 7.7 for a proof. 

If {Zn; n ≥ 1} is a martingale or submartingale, if h is 

convex, and if E [|h(Zn)|] < ∞ for all n, then {h(Zn); n ≥ 1}
is a submartingale. 

For example, if {Zn; n ≥ 1} is a martingale, then essen­

tially {|Zn|; n ≥ 1}, { 2
Zn; n ≥ 1} and {erZn; n ≥ 1 are sub-

martingales. 
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Stopped martingales 

The definition of a stopping time for a stochastic process 

{Zn; n ≥ 1} applies to any process. That is, J must be a 

rv and {J = n} must be specified by {Z1, . . . , Zn}. 

This can be extended to possibly defective stopping times 

if J is possibly defective (consider a random walk with a 

single threshold). 

A stopped process {Zn
∗; n ≥ 1} for a possibly defective 

stopping time J on a process {Zn; n ≥ 1} satisfies Zn
∗

 = Zn

if n ≤ J and Zn
∗ = ZJ if n > J. 

17 

For example, a given gambling strategy, where Zn is the 

net worth at time n, could be modified to stop when Zn 

reaches some given value. Then Zn
∗ would remain at that 

value forever after, while Zn follows the original strategy. 

Theorem: If {Zn; n ≥ 1} is a martingale (submartingale) 

and J is a possibly defective stopping rule for it, then the 

stopped process {Zn
∗; n ≥ 1} is a martingale (submartin­

gale). 

Pf: Obvious??? The intuition here is that before stop­

ping occurs, Zn
∗ = Zn, so Zn

∗ satisfies the martingale 

(subm.) condition. Afterwards, Zn
∗ is constant, so it 

again satisfies the martingale (subm) condition. Section 

7.8 does this carefully. 
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