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L23: Martingales, plain, sub, and super

Outline:

Review of Wald and sequential tests

Wald’s identity with zero-mean rv’s

Martingales

Simple Examples of martingales

Sub and super martingales

Thm: (Wald) Let {X;; : > 1} be IID with a semi-invariant
MGF ~(r) = In(E[exp(rX)]) that exists for (r_ < 0 < r).
Let {Sp; n>1 be the RW with S;, = X1+ ---+ X,. If J is
the trial at which S, first crosses a > 0 or § <0,
Elexp(rS;—Jvy(r)]=1 forre (r_,ry)
Corollary: If X <0 and ~(r*) =0 for 0 < r*, then
Pr{S; > a} < exp(—ar®)

Pf: The Wald identity says E [exp(r*S;] = 1, so this follows
from the Markov inequality.

This is valid for all lower thresholds and also for no lower
threshold, where it is better stated as

PI’{U{Sn > a}} < exp(—r*a)

This is stronger (for the case of threshold crossing) than
the Chernoff bound, which says that Pr{S, > a} < exp —r*«a

for all n.
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Review of hypothesis testing: View a binary hypothesis
as a binary rv H with py(0) = pg and py(1) = p;.

We observe {Y,;n > 1}, which, conditional on H =/ is IID
with density fy|H(y|£). Define the likelihood ratio

oty (wil0)

A" = 1]

= Ty wilD)

Pr{H=0 |} _ Pofyn (T 10) Po

= = — A(F").
PriH=1[g"}  p1fpn @ 11) 1
. n >p1/po select h=0
MAP rule: A7) { <pi/po select h=1.

Define the log likelihood ratio as

A = S i i (il0)
LLR = In[A(7")] = Z; n fy;|H(yi|1)

fy; e (9l 1)
Conditional on H = 1, {Sy; n > 1} is a RW with S, =

Z1+ ---Zn, where each Z; is a function of Y;. The Z,,
given H = 1 are then IID.
dy}

n
Sn= Y z where z; = In
i=1

fy, 1z (wil1)

— In{ fﬁ};(yill)f{gm(yilo)dy}

Note that (1) =0, so r* = 1.

y1(r) = In {/in|H(yZ‘|1)eXD [rln



For fixed n, a threshold rule says choose A = 0 if S;, > In .
Thus, given H = 1, an error occurs if S, > Inn. From the
Chernoff bound,

0 rv =1

|
%n(m + (1) In(i)/n
slope = In(n)/n

v(70)

71(7r0) — 70 |n(77)/n

Pr{e| H=1} < exp(ny1(ro) —rolnn)
Given H = 0, a similar argument shows that

Pr{e | H=0} < exp(ny1(ro) + (1 —75) Inn)

A better strategy is sequential decisions. For the same
pair of RW'’s, continue trials until either S, > a or S, <
where o« > 0 and 3 < 0.

Given H =1, {Sp;n > 1} is a random walk. Choose some
a>0and g < 0 and let J be a stopping time, stopping
when first S, > a or S, < (3.

If S; > «a, decide H = 0 and if S; < 3, decide H = 1.
Conditional on H =1, an error is made if S; > a. Then

Prie| H=1} = Pr{S; > a | H=1} < exp[—ar”]
where r* is the root of v(r) = InE[exp(rZ) | H =1], i.e.,

r* = 1.

fy 1 (y|0)
Y(r) = In/ny|H(y|1)exp [rlﬂ (%)]

= 10 [ Uy IO Uy IO dy



Choose apriori’s pg = p;. Then at the end of trial n
Pr{H=0 | Sh} 1—-Pr{H=1|Sh}

Pr=18  OPC Tern=tys,y T OPG

This is the probability of error if a decision 7 = 0 is made
at the end of trial n. Thus deciding » = 0 on crossing «
guarantees that Pr{e | H=1} < exp —a.

As we saw last time, the cost of choosing a to be large
is many trials under H = 0. In particular, the stopping
time J satisfies

E[S;| H=0] _ o+ E[overshoot | H=0]
E[Z| H=0] ~ E[Z | H=0]

E[J| H=0] =

Wald’s identity with zero-mean rv’s

If we take the first 2 derivatives of Wald’s identity at
r = 0, we get Wald’s equality and a useful result for
Zero-mean rv’s.

L [exp(rS;y — J7(1) =E [[S] — 7 (] exp(rS; — J1(r))]

cer [exp(rS; — Jv(r)] =E |:SJ — JY} =0; (Wald eq.)

r=

d? _ _
—SElexp(rS; - Jy(M)]]  =E[S7-0%J|=0; ifX=0
dr r=0

For zero-mean simple RW with threshold at « > 0 and

B < 0, we have J = —fa




Martingales

A sequence {Z,; n > 1} of rv's is a martingale if E[|Z,|] < c©
for all n > 1 and

ElZn| Zpn-1,Zn-2,...,21] = Zp_1 (1)

The condition E[|Z,|] < co is almost a mathematical fine
point, and we mostly ignore it here. The condition (1)
appears to be a very weak condition, but it leads to
surprising applications. In times of doubt, write (1) as

ElZn| Zpn-1=2p-1,.--,Z1=21] = zp_1

for all sample values z,_1,z,_2,...,21

Lemma: For a martingale, {Z,; n > 1}, and for n > > 1,
ElZn|Ziy Zi1 ... ,Z1) = Z;

Pf. To start, we show that E[Z3 | Z;] = Z;. Recall the
meaning of E[X] = E[E[X]|Y]]. Then

E[Z3| Z1] = E[E[Z3 | Z2,Z1] | Z1]

E[Z3| Z1] =E[E[Z3 | Z2,Z1] | Z1] = E[Z2|Z1] = Z1
In the same way,
E[ZH—Q | Zi, - - ,Zl} = E[E [Zz'+2 | Zit1,- - ,Zl} | Zis - - ,Zl}
= E[Zi—l—l | Zi, - ... ,Zl} = Z;
After more of the same, E[Z, | Z;,... ,Z1] = Z;.

The most important special case is E[Z, | Z1] = Z1, and
thus E[Z,] = E[Z1].
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Simple Examples of martingales

1) Zero-mean random walk: Let Z, = X3 + --- X;; where
{X;; i > 1} are IID and zero mean.

= E[Xn]+ 21 = Zy-1.

2) Sums of ‘arbitrary’ dependent rv’s: Suppose {X;; i > 1}
satisfy E[X; | X;_1,X;_2,...,X1] = 0. Then {Z,; n > 1}
where Z, = X; 4+ --- 4+ X is a martingale.

This can be taken as an alternate definition of a martin-
gale. We can either start with the sums Z;, or with the
differences between successive sums.
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3) Let X; = U,;Y; where {U;; i > 1} are IID, equiprobable
+1. The Y, are non-negative and independent of the U;
but otherwise arbitrary. Then

E[Xn| Xn_1,...,X1] =0

Thus {Z,; n > 1} where Z, = X; + --- X, IS a martingale.

4) Product form martingales. Suppose {X;;i > 1} is a
sequence of IID unit-mean rv’'s. Then {Z,; n > 1} where
Zn = X1X5--- Xy is @ martingale.

ElZn| Zn-1,.. . Z1] = E[XnZp-1]|Zp1,...,21]
E [Xn] E [Zn—l | Zp—1,--- >Z].]
E [Zn—l | Zn—l] = Z4p-—1-
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5) Special case of product form martingale: let X; be IID
and equiprobably 2 or O.

Pr{Z,=2"}=2"" Pr{Z,=0}=1-2"" E[Z)]=1.
Thus lim, Z, =0 WP1 but E[Z,] =1 for all n

6) Recall the branching process where X, is the number
of elements in gen n and X, = Zﬁl Y;» where the Y;
are IID.

Let Z, = X,/Y", i.e., {Z,; n > 1} is a scaled down branch-
ing process.

Xn
el
Thus this is a martingale.

YX, 1
| Xp—1,...,X1| = 77% = Zn_1.

E[Zn| Zn_1,...,21] =E
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Submartingales and supermartingales

These are sequences {Z,;n > 1} with E[|Z,|] < oo like
martingales, but with inequalities instead of equalities.
For all n > 1,

E[Zn| Zp_1,.-.,21]

Zp-1 submartingale

IN IV

Zp—1 supermartingale

We refer only to submartingales in what follows, since
the supermartingale case results from replacing Z,, with
—Zn.

For submartingales,

ElZn| Z;iy..., 211 > Z; for alln>:i>0

E[Zn] > E[Z)] for alln>¢>0
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Convex functions

A function h(z), R — R, is convex if each tangent to the
curve lies on or below the curve. The condition A" (z) > 0
is sufficient but not necessary.

h(z) = ||

h(ivl) + c(x — 1)
c= h(x1)

21 =E[Z] T

Lemma (Jensen’s inequality): If h is convex and Z is a
rv with finite expectation, then

h(E[Z]) < E[n(Z)]
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Jensen’s inequality can be used to prove the following
theorem. See Section 7.7 for a proof.

If {Z,; n > 1} is a martingale or submartingale, if h is
convex, and if E[|h(Zy)|] < oo for all n, then {h(Z,); n > 1}
is a submartingale.

For example, if {Z,; n > 1} is a martingale, then essen-

tially {|Z,|; n > 1}, {Z2;n > 1} and {e"%"; n > 1 are sub-
martingales.

16



Stopped martingales

The definition of a stopping time for a stochastic process
{Zn; n > 1} applies to any process. That is, J must be a
rv and {J = n} must be specified by {Z;,...,Z,}.

This can be extended to possibly defective stopping times
if J is possibly defective (consider a random walk with a
single threshold).

A stopped process {Z}; n > 1} for a possibly defective
stopping time J on a process {Z,; n > 1} satisfies Z} = Z,
ifn<Jand Z;=Z;if n> J.
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For example, a given gambling strategy, where Z, is the
net worth at time n, could be modified to stop when 7,
reaches some given value. Then Z} would remain at that
value forever after, while Z,, follows the original strategy.

Theorem: If {Z,; n > 1} is a martingale (submartingale)
and J is a possibly defective stopping rule for it, then the
stopped process {Z}; n > 1} is a martingale (submartin-
gale).

Pf: Obvious??? The intuition here is that before stop-
ping occurs, 7 = Z,, so Z; satisfies the martingale
(subm.) condition. Afterwards, Z; is constant, so it
again satisfies the martingale (subm) condition. Section
7.8 does this carefully.
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