6.262: Discrete Stochastic Processes 4/6/11
Lecture 16: Renewals and Countable-state Markov

Outline:

¢ Review major renewal theorems
e Age and duration at given ¢

e Countable-state Markov chains

Sample-path time average (strong law for renewals)
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Ensemble average (Blackwell’s thm); m(t) = E[N(t)]
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can be rewritten as
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If we model an arithmetic renewal process as a
Markov chain starting in the renewal state O, this
essentially says Pj, — mo.
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This is the best one could hope for. Note that
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but the order of the limits can’t be interchanged.

Age and duration at given ¢
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Assume an arithmetic renewal process of span 1.

For integer ¢, Z(t) =i >0 and X(t) = k > i) iff there
are successive arrivals at ¢t — 7 and t — 1 + k.

Let ¢; = Pr{arrival at time j} = >°,>1pg,(j) and let
go = 1 (nominal arrival at time 0). Then

Pz(t),)?(t)(i, k) = q—ipx (k) for0<i<t k>i



pZ(t),)?(t)(i’ k) = q—ipx (k) forO<i<t k>1
Note that
q; = Pr{arrival atj} = E[arrival atj] = m(i) — m(i — 1),
so by Blackwell, lim;_ . 1/X.
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Now look at asymptotic expected duration:
Jlim E (X =3, k-kpx(k)/X = E[X?]/X
This is the same as the sample-path average, but

now we can look at the finite ¢ case. More impor-
tant, we get a different interpretation.

For a given X =k, there are k equiprobable choices
for age; for each choice, the joint Z,X PMF is
px(k)/X. Thus large durations are enhanced rel-
ative to inter-renewals.

The expected age (after some work) is E [XQ} /2X —

%. This is at integer values of large t. The age

increases linearly with slope 1 to the next integer
value and then drops by 1.



Countable -state Markov chains

The biggest change from finite-state Markov chains
to countable-state chains is the concept of a recur-
rent class. Example:
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This Markov chain models a Bernoulli =1 process.
The state at time n is S, = X1+ Xo 4+ --- Xn. The
state S, at time n is j = 2k—n where k is the number
of positive transitions in the n trials.

All states communicate and have a period d = 2;
o3 =n[l - (p—q)?]. Py, approaches 0 at least as
1/y/n for every j.

Another example (called a birth-death chain)
P p p p
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In this case, if p > 1/2, the state drifts to the right
and Pg}j approaches O for all j. If p < 1/2, it drifts to
the left and keeps bumping state O.

A truncated version of this was analyzed in the
homework. With p > 1/2, the steady-state increases
to the right, with p < 1/2, it increases to the left,
and at p=1/2 it is uniform.

As the truncation point increases, the ‘steady-state’
remains positive only for p < 1/2.



We want to define recurrent to mean that, given
Xo =1, there is a future return to state : WP1. We
will see that the birth-death chain above is recurrent
if p < 1/2 and not recurrent if p > 1/2. The case
p = 1/2 is strange and will be called null-recurrent.

We can use renewal theory to study recurrent chains,
but first must understand first-passage-times.

Def: The first-passage-time probability, f;;(n), is

fz](n) = Pr{X’n:jv Xn—]_#j, Xn—Q#jv R 7X1#J|XO:Z} :
It's the probability, given Xy =i, that n is the first
epoch at which X, = j. Then

fij(n) = > Pyfrj(n—1); n>1; fi (1) = Py
=y

fij(n) = Y Ppfrj(n—1); n>1; fi;(1) = By
=y
Recall that Chapman-Kolmogorov says

-1
Pl =% PPyt
k

so the difference between f;;(n) and Pl; is only in
cutting off the outputs from ; (as before in finding
expected first-passage-times.

Let F;;(n) = X,,<n fij(m) be the probability of reach-
ing j by time n or before. If lim,_ F;j(n) = 1, there
is a rv T;; with distribution function F;; that is the
first-passage-time rv.
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We can also express F;;(n) as
Fij(n) =P+ > PyFrj(n—-1); n>1; Fj;(1)=PFy;
k]
Since Fj;(n) is nondecreasing in n, the limit F;;(co)
must exist and satisfy
Fij(00) = Pij+ > PigFp;(c0).
k#j
Unfortunately, choosing F;;(cc) = 1 for all i,; satis-
fies these equations. The correct solution turns out

to be the smallest set of F;;(co) that satisfies these
equations.

If F;;(c0) = 1, then an eventual return from state
j occurs with probability 1 and the sequence of re-
turns is the sequence of renewal epochs in a renewal
process.
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If Fj;(c0) = 1, then there is a rv T}, with the distribu-
tion function F;;(n) and j is recurrent. The renewal
process of returns to ; then has inter-renewal inter-
vals with the distribution function F;;(n).

From renewal theory, the following are equivalent:
1) state j is recurrent.
2) iMoo Njj(t) = co with probability 1.
3) limy—oo E [ij(t)} = 0.
4) 1Moo Y1<n<t Py = oo,

None of these imply that E [Tjj} < 0.
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Two states are in the same class if they communi-
cate (same as for finite-state chains).

If states i and j are in the same class then either
both are recurrent or both transient (not recurrent).

Pf: If ;5 is recurrent, then ), Pj?”; = oco0. T hen

©.@)

o
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All states in a class are recurrent or all are transient.

By the same kind of argument, if ¢,5 are recurrent,

13

If a state j is recurrent, then T;; might or might not
have a finite expectation.

Def: If E[Tj } < oo, j is positive recurrent. If T;;

is a rv and E[Tjj] = oo, then ;5 is null recurrent.
Otherwise j is transient.

For p = 1/2, each state in each of the following is
null recurrent.

P D P D D
S~ () ~—
q g=1-p q q q

e e e Sl
q g=1-p q q q
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