
Sample-path time average (strong law for renewals) 
�  

N(t) 1 
Pr lim = 

�

= 1. 
t→∞ t X 

Ensemble & time average (elementary renewal thm) 
 

N(t) 1 
lim E = 

t→∞ 

�

t

�

X 

Ensemble average (Blackwell’s thm); m(t) = E [N(t)] 

λ 
lim [m(t+λ)  m(t)] = Arith. X, span λ 

t→∞ 
−

X 

δ 
lim [m(t+δ) − m(t)] = Non-Arith. X, any δ > 0 

t→∞ X 
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Lecture 16: Renewals and Countable-state Markov 

Outline: 

•	 Review major renewal theorems 

•	 Age and duration at given t


• Countable-state Markov chains
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λ 
lim [m(t+λ) − m(t)] = Arith. X, span λ 

t→∞ X 
can be rewritten as 

λ 
lim Pr renewal at nλ  = Arith. X, span λ 

n→∞ 
{ }

X 
If we model an arithmetic renewal process as a 
Markov chain starting in the renewal state 0, this 
essentially says  Pn π0.00 → 

δ 
lim [m(t+δ) − m(t)] = Non-Arith. X, any δ > 0 

t→∞ X 
This is the best one could hope for. Note that 

m(t+δ) − m(t) 1 
lim lim = 
δ→0 t→∞ δ X 

but the order of the limits can’t be interchanged. 
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Age and duration at given t 
� 

� 

� 

X1 ✲

X2 

✛ 

✲✛ Z(t) ✲

X

✛ 

�(t) ✲✛ 

✻ 
N(t) 

X(t) = XN(t) 

t 
0 S1 S2 S3 

�

Assume an arithmetic renewal process of span 1. 

For integer t, Z(t) = i ≥ 0 and X�(t) = k > i) iff there 
are successive arrivals at t − i and t − i + k. 

Let qj = Pr{arrival at time j} = n≥1 pS (n j) and let 
q0 = 1 (nominal arrival at time 0).

�

 Then 

p � (i, k) = qt ipX(k) for 0 
Z(t),X(t) − ≤ i ≤ t; k > i 

4 



p � (i, k) = qt ipX(k) for 0  i  t; k > i 
Z(t),X(t) − ≤ ≤

Note that 

qi = Pr{arrival at j} = E [arrival at j] = m(i) − m(i − 1), 

so by Blackwell, limj→∞ 1/X. 

pX(k) 
lim p (i, k) = for k > i  0. 

t→∞ Z(t),X �(t) X 
≥

�∞ ( ) c
k=i+1 pX k F (i)

lim p (i) = = X

 
≥ 0Z( rt) fo  i  . 

t→∞ X X

k−1 p (k) kp (k) 
lim p � (k) = X

)

�
i=0 = X

for k 
X(

≥ 1. 
t→∞ t X X 

5 

Now look at asymptotic expected duration: 

lim E 
t→∞ 

This is the

�
X�

�  
( = · 2t)  

�∞ 
k  kpX(k)/X = E X

�
/

k=1 

�
X

 same as the sample-path average, but 
now we can look at the finite t case. More impor­

tant, we get a different interpretation. 

For a given X� = k, there are k equiprobable choices 
for age; for each choice, the joint Z, X� PMF is 
pX(k)/X. Thus large durations are enhanced rel­
ative to inter-renewals. 

 
The expected age (after some work) is E 2X /2X 
1 

− 

. This is at integer values of large t. 

�

The

�

 age 2
increases linearly with slope 1 to the next integer 
value and then drops by 1. 
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p ✓✏ 
p 

✒✑
 

p 
 

p  p 
③ ③ ③−2② 

✓
−1

✏
②   

✓ ✔
✒✑ 0 

✏
②

✗
✒✑ 1 

q  
q = 1 − p q q

✖✕
q 

Countable -state Markov chains 

The biggest change from finite-state Markov chains 
to countable-state chains is the concept of a recur­
rent class. Example: 

This Markov chain models a Bernoulli ±1 process. 
The state at time n is Sn = X1 + X2 + · · · Xn. The

state Sn at time n is j = 2k−n where k is the number 
of positive transitions in the n trials. 

All states communicate and have a period d = 2; 
2 σ = n[1 − (p − q)2]. Pn approaches 0 at least as Sn 0,j 

1/
√

n for every j. 
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✓✏ 
p p

 
p p

③✓✏
✒✑

  
③ 

✿✘ 0 ② 1 ② 

✓
2 

✏ ③
② 3   

✗✔
q q = 1 − 

✒✑ ✒✑ ✖✕ 
p q q q 

Another example (called a birth-death chain) 

In this case, if p > 1/2, the state drifts to the right 
and Pn approaches 0 for all j. If p < 1/2, it drifts to 0j 
the left and keeps bumping state 0. 

A truncated version of this was analyzed in the 
homework. With p > 1/2, the steady-state increases 
to the right, with p < 1/2, it increases to the left, 
and at p = 1/2 it is uniform. 

As the truncation point increases, the ‘steady-state’ 
remains positive only for p < 1/2. 
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We want to define recurrent to mean that, given 
X0 = i, there is a future return to state i WP1. We 
will see that the birth-death chain above is recurrent 
if p < 1/2 and not recurrent if p > 1/2. The case 
p = 1/2 is strange and will be called null-recurrent. 

We can use renewal theory to study recurrent chains, 
but first must understand first-passage-times. 

Def: The first-passage-time probability, fij(n), is 

fij(n) = Pr{Xn =j, Xn−1=j, Xn−2=j, . . . , X1=j|X0=i} . 

It’s the probability, given X0 = i, that n is the first 
epoch at which Xn = j. Then 

 
fij(n) = 

�
Pikfkj(n − 1); n > 1; fij(1) = Pij. 

k=j

9 

� � �

�

 
fij(n) = 

�
Pikfkj(n − 1); n > 1; fij(1) = Pij. 

k=j

Recall that Chapman-Kolmogorov says 
� n Pij = nPikP −1 ,kj 
k 

so the difference between  fij(n) and Pn is only in ij
cutting off the outputs from j (as before in finding 

expected first-passage-times. 

Let Fij(n) = 
�

m≤n fij(m) be the probability of reach­

ing j by time n or before. If limn→∞ Fij(n) = 1, there 

is a rv Tij with distribution function Fij that is the 

first-passage-time rv. 
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We can also express Fij(n) as 
 

Fij(n) = Pij + 
�

PikFkj(n − 1); n > 1; Fij(1) = Pij 
k=j

Since Fij(n) is nondecreasing in n, the limit Fij(∞) 
must exist and satisfy 

 
Fij(∞) = Pij + 

�
PikFkj(∞). 

k=j

Unfortunately, choosing Fij(
    

∞) = 1 for all i, j satis­
fies these equations. The correct solution turns out 
to be the smallest set of Fij(∞) that satisfies these 
equations. 

If Fjj(∞) = 1, then an eventual return from state 
j occurs with probability 1 and the sequence of re­
turns is the sequence of renewal epochs in a renewal 
process. 
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�

�

If Fjj(∞) = 1, then there is a rv Tjj with the distribu­

tion function Fjj(n) and j is recurrent. The renewal 

process of returns to j then has inter-renewal inter­

vals with the distribution function Fjj(n). 

From renewal theory, the following are equivalent: 

1) state j is recurrent. 

2) limt→∞ Njj(t) = ∞ with probability 1. 
 

3) limt→∞ E 
�
Njj(t)

�
= ∞. 

4) lim n
t  

�  
1 n t P  = →∞ ≤ ∞.≤ jj

 
None of these imply that E 

�
Tjj 

�
< ∞. 
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p ✓✏ 
p ✓✏ 

p ✓✏ 
p ✗✔

✒✑
 p 

③ ③− −  ③ 
2②  1②  0 ② 1   

q q = 1 − p
✒✑

q 
✒✑

q
✖✕

q 

✓  
p

 
p

 
p  p

③ ③ ③
✘✿✒✑0 

✏
② 

✓✏
②

✓
✒✑1  

✏
✒✑2 ② 

✗✔
✖✕3

q q = 1 − p q q q 

If a state j is recurrent, then Tjj might or might not 

have a finite expectation. 

 
Def: If E 

�
Tjj 

�
< ∞, 
�

j is positive recurrent. If 
�

Tjj  
is a rv and E Tjj = ∞, then j is null recurrent. 

Otherwise j is transient. 

For p = 1/2, each state in each of the following is 

null recurrent. 
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Two states are in the same class if they communi­

cate (same as for finite-state chains). 

If states i and j are in the same class then either 

both are recurrent or both transient (not recurrent). 

Pf: If j is recurrent, then 
�

n P
n   =∞. Then jj

�∞  n 
∞

Pii ≥ 
� m k � Pij P jjP jk = ∞ 

n=1 k=1 

All states in a class are recurrent or all are transient. 

By the same kind of argument, if i, j are recurrent, 

then Fij(∞) = 1. 
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