
One of the main reasons why the concept of con­

vergence WP1 is so important is the following: 

Thm: Assume that {Zn; n ≥ 1} converges to α WP1 

and assume that f(x) is a real valued function of 

a real variable that is continuous at x = α. Then 

{f(Zn); n ≥ 1} converges WP1 to f(α). 

For a renewal process with interarrivals {Xn; n ≥ 1}
where E [X] < ∞, the arrival epochs satisfy Sn/n → 

E [X] WP1 and thus n/Sn → 1/X WP1. The strong 

law for renewals follows. 

N(t)Thm: Pr
�
lim 1

t→∞ = 
� 

= 1.t X 
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Lecture 15: The last(?) renewal 

Outline: 

• Review sample-path averages and Wald 

• Little’s theorem 

• Markov chains and renewal processes 

• Expected number of renewals, m(t) = E [N(t)] 

• Elementary renewal and Blackwell thms 

• Delayed renewal processes 
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The strong law for renewals also holds if X = ∞. In 

this case, since X is a rv and Sn is a rv for all n, 

N(t) grows without bound as t →∞, but N(t)/t → 0. 

Since N(t)/t converges WP1 to 1/X, it also must 

converge in probability, i.e., 
 

N(t) 1 
lim Pr 

��
��

�� − 

�� �
��� > � = 0 for all � > 0 

t→∞  t X  

This is similar to the elementary renewal theorem, 

which says that 
� � 
N(t) 1 

lim E = 
t→∞ t X 
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Residual life 

The integral of Y (t) over t is a sum of terms 2Xn/2. 
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1 N�(t)  N(t)+1 2 1 t 1  
Xn   2 Y (τ)dτ  X  2t t 0 2 ntn=1 
≤

�
≤

n

�

=1 

�N(t) �  
2 N(t) 2 X X N(t) E 2X

n=1 n  n=1 n lim = lim = 
(

�

WP1
 

�

 
t→∞ 2t t→∞ N t) 2t 2E [X] 

Why is this true? It is an abbreviation for a sample-

path result. 
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For the sample point ω, if the limits exist, we have 

�N(t,ω) 2 N(t,ω)  
lim n=1 Xn(ω) 2X (ω) N(t, ω) 

= lim n=1 n

t→∞ 2t t→∞ 

�

N(t, ω) 2t 

For the given ω and a given t, the RHS above is 

the product of 2 numbers, and as t increases, we 

are looking at the limit of a product of numerical 

functions of t. 

For those ω in a set of probability 1, both those 

functions converge to finite values as t →∞. Thus 

the limit of the product is the product of the limits. 

This is a good example of why the strong law, deal­

ing with sample paths, is so powerful. 
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Residual life and duration are examples of renewal 

reward functions. 

In general R(Z(t), X(t)) specifies reward as a func­

tion of location in the local renewal interval. 

Thus reward over a renewal interval is 
� Sn 

� Xn 
Rn = R(τ −Sn−1, Xn) dτ = R(z, Xn) dz 

Sn z=0 −1 

1 � t E [Rn]
lim R(τ) dτ = W.P.1 

t→∞ t τ =0 X 
This also works for ensemble averages. 
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Def: A stopping trial (or stopping time) J for a 
sequence {Xn; n ≥ 1} of rv’s is a positive integer-
valued rv such that for each n ≥ 1, the indicator rv 
I{J=n} is a function of {X1, X2, . . . , Xn}. 

A possibly defective stopping trial is the same ex­
cept that J might be a defective rv. For many ap­
plications of stopping trials, it is not initially obvious 
whether J is defective. 

Theorem (Wald’s equality) Let {Xn; n ≥ 1} be a se­
quence of IID rv’s, each of mean X. If J is a stop­
ping trial for {Xn; n ≥ 1} and if E [J] < ∞, then the 
sum SJ = X1 + X2 + · · · + XJ at the stopping trial J
satisfies 

E [SJ ] = XE [J] . 
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Wald: Let {Xn; n ≥ 1} be IID rv’s, each of mean X. 

If J is a stopping time for {Xn; n ≥ 1}, E [J] < ∞, and 

SJ = X1 + X2 + · · · + XJ , then

E [SJ ] = XE [J] 

In many applications, where Xn and Sn are nonneg­

ative rv’s , the restriction E [J] < ∞ is not necessary. 

For cases where X is positive or negative, it is nec­

essary as shown by ‘stop when you’re ahead.’ 
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Little’s theorem 

This is an accounting trick plus some intricate han­
dling of limits. Consider an queueing system with 
arrivals and departures where renewals occur on ar­
rivals to an empty system. 

Consider L(t) = A(t)−D(t) as a 
�

renewal reward func­
 

tion. Then Ln = Wi over each busy period. 

A(τ) 

D(τ) 
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✲
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✲
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0 S1 t S2 

10 



Let L be the time average number in system, 

W
 

� N(t)1 t
L = lim L(τ ) lim i=0 idτ =  

t→∞ t 0 t→∞ 

�

t 

1 
λ = lim A(t) 

t→∞ t 

A�(t)1  
W = lim Wi 

t→∞ A(t) i=1 

t 1 A(t) 
= lim lim Wi 

t→∞ A(t) t→∞ t i

�

=1 

= L/λ 

This is the same use of sample path limits as before. 
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Markov chains and renewal processes 

For any finite-state ergodic Markov chain {Xn; n ≥ 0
        

}
with X0 = i, there is a renewal counting process 
{Ni(t); t ≥ 1} where Ni(t) is the number of visits to 
state i from time 1 to t. Let Y1, Y2, . . . be the inter-
renewal periods. By the elementary renewal thm, 

E [N (t)] 1 
lim i = 

t→∞ t Y


t P = Pr{Ni(t) − Ni(t − 1) = 1} =  ii E [Ni(t)− Ni(t − 1)]

�t n P = E [N (t)]


n=1 ii i

But since Pt → πi exponentially, ii

t P t E [Ni(t)] 1 
π n=1 ii

i = lim 
�

= = 
t→∞ t t Y 

Thus the mean recurrence time of state i is 1/πi. 
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Expected number of renewals, m(t) = E [N(t)] 

The elementary renewal theorem says 

lim E [N(t)] /t = 1/X 
t→∞ 

For finite t, m(t) can be very messy. Suppose the 
interarrival interval X is 1 or 

√
2. As t increases, 

the points at which t can increase get increasingly 
dense, and m(t) is non-decreasing but otherwise 
ugly. 

Some progress can be made by expressing m(t) in 
terms of its values at smaller t by the ‘renewal equa­
tion.’ 

 t 
m(t) = FX(t) + m(t  x)dFX(x); m(0) = 0


� 0
 
−

t 

�

= [1 + m(t − x)]fX(x) dx if fX(x) exists 
0 
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The renewal equation is linear in the function m(t) 

and looks like equations in linear systems courses. 

It can be solved if fX(x) has a rational Laplace trans­

form. The solution has the form 

t 2σ 1 
m(t) = +

X 2 2X
− + �(t) for t 

2
≥ 0, 

where limt  →∞ �(t) = 0.

The most significant term for large t is t/X, con­

sistent with the elementary renewal thm. The next 

two terms say the initial transient never quite dies 

away. 

Heavy tailed distribution pick up extra renewals ini­

tially (recall pX(�) = 1 − �, pX(1/�) = �). 
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Blackwell’s theorem 

Blackwell’s theorem essentially says that the ex­
pected renewal rate for large t is 1/X. 

It cannot quite say this, since if X is discrete, then 
Sn is discrete for all n. Thus suggests that m(t) = 
E [N(t)] does not have a derivative. 

Fundamentally, there are two kinds of distribution 
funtions — arithmetic and non-arithmetic. 

A rv X has an arithmetic distribution if its set of 
possible sample values are integer multiples of some 
number, say λ. The largest such choice of λ is the 
span of the distribution. 
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If X is arithmetic with span λ > 0, then every Sn 

must be arithmetic with a span either λ or an integer 
multiple of λ. 

Thus N(t) can increase only at multiples of λ. 

For a non-arithmetic discrete distribution (example: 
fX(1)=1/2, fX(π)=1/2), the points at which N(t) can 
increase become dense as t →∞. 

Blackwell’s thm: 
λ 

lim [m(t+λ) − m(t)] = Arith. X, span λ 
t→∞ X 

δ 
lim [m(t+δ) − m(t)] = Non-Arith. X, any δ > 0 

t→∞ X 
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✗✔ ✗✔ ✗✔ 

✖✕   ✗✔  
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�❍✐��     

✗✔
❈❖ ❍❈ 

✖✕

For any renewal process with inter-renewals at a 
finite set of integers times, there is a corresponding 
Markov chain modeling returns to state 0. 

The transition probabilities can be seen to be 

1 
P

− p (0)
i,i+1 = X  − pX(1) − · · · − pX(i) 

1 − pX(0) − pX(1) − · · · − pX(i − 1) 

Assuming that the chain is aperiodic, we know that 
limn→∞ Pn      00 = π0. As seen before, π0 = 1/X.

Moral of story: When doing renewals, think Markov, 
and when doing Markov, think renewals. 
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Blackwell’s theorem uses difficult analysis and doesn’t 

lead to much insight. If Laplace techniques work, 

then it follows from the solution there. 

The hard case is non-arithmetic but discrete distri­

butions. 

The arithmetic case with a finite set of values is 

easy. We model the renewal process as returns to 

a given state in a Markov chain. Choose λ = 1 for 

simplicity. 
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Delayed renewal processes 

A delayed renewal process is a modification of a re­

newal process for which the first inter-renewal inter­

val X1 has a different distribution than the others. 

They are still all independent. 

The bottom line here is that all the limit theorems 

remain unchanged, even if E [X1] = ∞. 

When modelling returns to a given state for a Markov 

chain, this lets us start in one state and count visits 

to another state. 
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