
6.262 Discrete Stochastic Processes Wednesday, May 18, 9:00-12:00 noon, 2011 
MIT, Spring 2011 

Final examination 

There are 4 questions, each with several parts. We attempted to put the easier parts of 
each question toward the beginning of that question. 

You have 3 hours to finish the final. If any part of any question is unclear, please ask. 

The blue books are for scratch paper only. Please put your answers and an explanation 
of your reasoning in the white books. 

Please put your name on each white booklet you turn in. 

The questions have been designed to require very little computation if done in the most 
insightful way. Explore the question carefully and think about the simplest cases before 
lauching into a messy solution. 

Partial credit: Careful reasoning will receive generous partial credit even if the final answer 
is incorrect, and correct answers with incorrect or inadequate reasons will not receive full 
credit. 

We will try to match your grade on a question to the level of understanding, both intuitive 
and mathematical, that you have exhibited rather than your ability to manipulate a large 
number of equations. 

Your explanations need not appear to be rigorous, but should be adequate as a full 
explanation to a fellow student, leaving nothing in doubt. 
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Problem 1: A final exam is started at time 0 for a class of n students. Each student is 
allowed to work until completing the exam. It is known that for 1  i  n, student i’s time 
to complete the exam, Xi, is exponentially distributed with density fX (x) = �e��x; x � 0. 
The times X1, . . . , Xn are IID. 

a) Let Z be the time at which the last student finishes. Show that Z has a distribution 
function FZ (z) given by [1 � exp(��t]n . 

b) Let T1 be the time at which the first student leaves. Show that the probability density 
of T1 is given by n�e�n�t . For each i, 2  i  n, let Ti be the interval from the departure 
of the i � 1st student to that of the ith. Show that the density of each Ti is exponential 
and find the parameter of that exponential density. Explain why each Ti is independent. 
Finally note that Z = 

Pn Ti.i=1 
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Problem 2: (The results from problem 1 will be useful here). A Yule process is a 
continuous time version of a branching process with the special property that the process 
never decreases. The process starts at time 0 with one organism. This organism splits 
into two organisms after a time Y1 with the density fY1 (y) = �e��y, y � 0. Each of these 
two organisms splits into two more organisms after independent exponentially-distributed 
delays, each with this same density �e��y. In general, each old and new organism continues 
to split forever after a delay y with this same density � exp(��y). 

a) Let T1 be the time at which the first organism splits, and for each i > 1, let Ti be 
the interval from the i � 1st splitting until the ith. Show that Ti is exponential with 
parameter i� and explain why the Ti are independent. 

b) For each n � 1, let the continuous rv Sn be the time at which the nth splitting occurs, 
i.e., Sn = T1 + + Tn. Find a simple expression for the distribution function of Sn.· · · 
Hint: look carefully at the solution to parts a) and b) of problem 1. 

c) Let X(t) be the number of organisms at time t > 0. Express the distribution function 
of X(t) for each t > 0 in terms of Sn for each n. Show that X(t) is a rv for each t > 0 
(i.e., show that X(t) is finite WP1). 

d) Find E [X(t)] for each t > 0. 

e) Is {X(t); t � 0} a countable-state Markov process? Explain carefully. If so describe 
the embedded Markov chain and identify each state as positive recurrent, null recurrent, 
or transient. 

f) Is {X(t); t � 0} an irreducible countable-state Markov process? 

g) Is {Sn; n � 1} either a martingale or a submartingale? 

h) Now suppose the births of a Yule process (viewing the original organism as being born 
at time 0) constitute the input to a queueing process (each birth enters the queue at 
its time of birth). The queue has a single server and whenever n organisms are in the 
system (queue plus server), the time to completion of service for the given organism is 
exponential with rate µn. This means that if a new organism enters the queue while the 
server is busy, the service rate changes according to the new number in the system. Let 
Z(t) be the number in the system at time t. 

h(i): Is {Z(t); t � 0} a countable-state Markov process? 

h(ii): Is Z(t) a rv for each t > 0 no matter what the µn are? 
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Problem 3: A random walk {Sn; n � 1}, with Sn = 
Pn

i=1 Xi , has the following 
probability density for each Xi 

fX (x) = 

8< 

:


e�x 

e�e�1 ; �1  x  1 

= 0 ; elsewhere. 

a) Find the values of r for which g(r) = E [exp(rX)] = 1. Hint: these values turn out to 
be integers. 

b) Let P↵ be the probability that the random walk ever crosses a threshold at some given 
↵ > 0. Use the Wald identity to find an upper bound to P↵ of the form P↵  e�↵A where 
A is a constant that does not depend on ↵. Evaluate A. Hint: you may assume that 
the Wald identity applies to a single threshold at ↵ > 0 without any lower threshold or 
assume another threshold at some � < 0. 

c) Use the Wald identity to find a lower bound to P↵ of the form P↵ � Be�↵A where A 
is the same as in part b) and B > 0 is a constant that does not depend on ↵. Hint: Keep 
it simple — you are not being asked to find the tightest possible such bound. If you use 
2 thresholds, find your lower bound in the limit � !1. 
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Problem 4: A queueing system has four queues in the configuration shown. Each queue 
is identical, with a single server with IID exponential service times, each with density 
µe�µx. The service times are IID both within each queue and between each queue. 

The left most queue (queue 1, say) is M/M/1 with an input which is a Poisson process 
of rate � < µ. Assume that this process started at time �1. The inputs to the other 
queues are indicated in the figure below. More specifically, each output from queue 1 
is switched to one of the intermediate queues, say queues 2 and 3. Each output goes to 
queue 2 with probability Q and to queue 3 with probabiity 1-Q. These switching decisions 
are independent of the inputs and outputs from queue 1. The outputs from queues 2 and 
3 are them combined and pass into queue 4. 
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a) Describe the output process from queue 1. That is, describe whether it is a renewal 
process, and if so, whether it is a Poisson process. At what rate do customers leave queue 
1? What can you say about the relation between the outputs and the inputs of queue 1? 

b) Describe the input processes to queues 2 and 3. Are they Poisson, and if so, of what 
rate? What is the relationship between the input process to queue 2 and that to queue 
3? 

c) Describe the output processes from queues 2 and 3. Are they Poisson, and what is 
the relationship between them? What is the rate at which customers leave each of these 
queues? 

d) Describe the input and output process for queue 4 (whether they are Poisson, what 
their rates are, and whether they are independent)? 

e) Find the expected delay through the entire system for those customers going through 
queue 2. 
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