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Solution to 6.262 Final Examination 5/21/2009 

Solution to Question 1 

a) We first solve the steady state equations for the Markov process. As we have seen many 
times, the pi, i ≥ 0 for a birth-death chain are related by pi+1qi+1,i = piqi,i+1, which in this 
case is pi+1µ = pi∏/(i + 1). Iterating this equation, 

∏ ∏2 ∏i 

pi = = p0 = pi−1 
µi 

= pi−2 
µ2i(i−1) 

· · · 
µii!

. 

Denoting ∏/µ by ρ, 

1 " 1
ρi 

# 

1 = 
X 

pi = p0 

X 
= p0e ρ . 

i! 
i=0 i=0 

Thus, 

p0 = e−ρ; pi = 
ρie−ρ 

. 
i! 

This is a solution to the steady state equations, and we know (Theorem 6.2) that if 
P

i pi∫i < 
1, where the ∫i are given in part b, then this solution is unique and the process is positive 
recurrent. Part b) also shows that 

P
i pi∫i < 1. 

To explain pi as a time average more carefully, each sample point ω of the underlying 
sample space gives rise to a sample path {x(t); t ≥ 0} of the process {X(t); t ≥ 0}. For 
all of these sample paths except a set of probability 0, pi is the limiting fraction of time 
that the process is in state i. That is, for a sample path x(t), let Ri(t) = 1 for t such that 
x(t) = i and let Ri(t) = 0 otherwise. Then pi is the time-average fraction of time in state i 
if limt→1(1/t) 

R t Ri(τ) = pi for all sample paths except a set of probability zero. 0 

Most students confused time average with limiting ensemble average or limiting time and 
ensemble average. 

b) For the embedded chain, P01 = 1, and for all i > 0, 

∏ µ(i + 1) 
Pi,i+1 = 

∏ + µ(i+1)
; Pi,i−1 = 

∏ + µ(i+1)
. 

All other transition probabilities are 0. The departure rate from state i is 

∏ 
∫0 = ∏; ∫i = µ + for all i > 0. 

i + 1 

The steady state probabilities πi for the embedded chain are quite messy; sorry for that. 
They can be found directly from the transition probabilities, but it is quite a bit easier to 

pi∫icalculate them as πi = P1
j=0 pj ∫j 

. First we calculate 
P

j pj ∫j by separating out the j = 0 

term and then summing separately over the two terms, µ and ∏/(j + 1), of ∫j . 
1 1

µ 
1

ρj ∏X 
pj ∫j = e−ρ∏ + 

X 
e−ρ ρ

j

j 

!
+ 

X 
e−ρ 

j!(j + 1)
. 

j=0 j=1 j=1 
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Substituting µρ for ∏ and combining the first and third term, 

1 1
e−ρ ρ

j µ 
1

µX 
pj ∫j = 

X 
+ 

X 
e−ρ ρj+1

j! (j + 1)! 
j=0 j=1 j=0 

1
µ

= 2 
X 

e−ρ ρ
j 

= 2µ(1 − e−ρ). 
j! 

j=1 

The steady state probabilities for the embedded chain are then given by 

ρ ρi µ 
ρ 

∂ 

π0 = ; πi = + 1 ; for i > 1.
2(eρ − 1) 2i!(eρ − 1) i + 1 

There are many forms for this answer. One sanity check is to observe that the embedded 
chain probabilities do not change if ∏ and µ are both multiplied by the same constant, and 
thus the πi must be a function of ρ alone. Another sanity check is to observe that in the 
limit ρ 0, the embedded chain is dominated by an alternation between states 0 and 1, so →
that in this limit π0 = π1 = 1/2. 

c) The time-average interval between visits to state j is W j = 1/(pj ∫j). This is explained 
in detail in section 6.2.3 of the class notes, but the essence of the result is that for renewals 
at successive entries to state j, pj must be the ratio of the expected time 1/∫j spent in state 
j to the overall expected renewal interval W j . Thus W j = 1/(∫j ρj ). 

eρ (j + 1)! eρ 

W 0 = 
∏ 

; W j = 
ρj [∏ + (j + 1)µ]

. 

The time-average number of state transitions per visit to state j is T jj = 1/πj . This is 
proven in Chapter 5, but the more interesting way to see it here is to use the same argument 
as used for W j above. That is, consider the embedded Markov chain as a discrete-time 
process with one unit of time per transition. Then πj is the ratio of the unit time spent on 
a visit to j to the expected number of transitions per visit to j. Thus 

2(eρ − 1) 2(j + 1)! (eρ − 1)
T 00 = 

ρ 
; T jj = 

ρj (ρ + j + 1) 
for j ≥ . 

d) On each successive entry to state 0, the embedded chain is in state 0 and the duration 
in that state is a uniform rv independent of everything except the fact of its existence due 
to entering state 0. This duration in state 0 is finite and IID between successive visits to 0. 
All subsequent states and durations are independent of those after each subsequent visit to 
state 0 and the time to return to state 0 is finite with probability 1 from the same argument 
used for the Markov process. Thus successive returns to state 0 form a renewal process. 
The same argument works for exits from state 0. 

For successive entries to some arbitrary given state j, the argument is slightly more complex, 
but it also forces us to understand the issue better. The argument that the epochs of 
successive entries to a given state in a Markov process form a renewal process does not 
depend at all on the exponential holding times. It depends only on the independence 
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of the holding times and their expected values. Thus changing one holding time from an 
exponential to a uniform rv of the same expected value changes neither the expected number 
of transitions per unit time nor the expected time between entries to a given state. Thus 
successive visits to any given state form renewal epochs. 

e) As explained in part d, the expected time between returns to any given state j is the 
same as in part c. Since the embedded Markov chain has not changed at all, the expected 
number of transisions between visits to any given state j is also given in part c. 

f) The modified process is not a Markov process. Essentially, the fact that the holding time 
in state 0 is no longer exponential, and thus not memoryless, means that if X(t) = 0, the 
time at which state 0 is entered provides information beyond knowing X(τ) at some given 
τ < t 

As an example, suppose that µ << ∏ so we can ignore multiple visits to state 0 within an 
interval of length 2/∏. We then see that P {X(t) = 0 | X(t − 1/∏) = 0,X(t − 2/∏) = 0} = 0 
since there is 0 probability of a visit to state 0 lasting for more than time 2/∏. On the other 
hand, 

P {X(t) = 0 | X(t − 1/∏) = 0,X(t − 2/∏ = 1} > 0, 

In fact, this latter probability is 1/8 in the limit of large t and small µ. 



Solution to Question 2 

a) First consider the case where SN ≥ α. As supplied by the hint, conditioning on SN ≥ α 
implies that SN−1 < α and thus SN = SN−1 + YN (i.e. IN = 1). Now let Z be the amount 
by which SN−1 + YN exceeds the threshold, that is, 

|SN | = α + Z , where Z = |SN | − α = |SN−1 + YN | − α. 

Let SN−1 = s for some s ∈ (−α, α) and note that 

P(Z ≥ z | SN−1 = s, SN ≥ α)	 = P(s + YN − α ≥ z | SN−1 = s, SN ≥ α) 
= P(YN ≥ z − s + α | SN−1 = s, SN ≥ α). 

But, for any s ∈ (−α, α), 

{SN−1 = s, SN ≥ α} = {SN−1 = s, YN ≥ α − s}. 

Furthermore, YN is independent of SN−1 = Y1 + . . . + YN−1. Thus, 

P(Z ≥ z | SN−1 = s, SN ≥ α) = P(YN ≥ z − s + α | YN ≥ α − s) = e−λz , 

where the last equality follows by the fact that YN is exponentially distributed with rate 
λ. (Recall the memoryless property of the exponential distribution.) In other words, con­
ditioned on SN ≥ α and SN −1 = s, the overshoot Z is exponentially distributed with rate 
α. Since the result holds for any s ∈ (−α, α), it follows that conditioned on SN ≥ α, Z is 
exponentially distributed with rate λ. 

Similarly, for SN ≤ −α, we write SN = −α − Z, where Z is distributed as above. 

b) Let qα = P(SN ≥ α). It follows that P(SN ≤ −α) = 1 − qα. By the Total Expectation 
Theorem from 6.041, 

E(e rSN )	 = E(e rSN | SN ≥ α)qα + E(e rSN | SN ≤ −α)(1 − qα) 
= E(e r(α+Z))qα + E(e r(−α−Z))(1 − qα) 

= e rα	 λ
qα + e−rα λ 

(1 − qα),
λ − r λ + r 

λ	 λwhere λ−r is the MGF associated with Z and valid for r < λ, and λ+r is the MGF associated 
with −Z and valid for r > −λ. It follows that the above expression for E(erSN ) is valid for 
|r| < λ. 

c) By the Total Expectation Theorem, E(erI1Y1 ) = E(erI1Y1 | I1 = 1)p + E(erI1Y1 | I1 = 
−1)(1 − p). Since I1 is independent of Y1, it follows that 

λ λ
E(e rI1Y1 ) = E(e rY1 )p + E(e−rY1 )(1 − p) = p

λ − r 
+ (1 − p)

λ + r
, 

from which we obtain that E(erI1Y1 ) = 1 ⇐⇒ r ∈ {0, λ(1−2p)}. Note that for p ∈ (0, 1/2), 
the two values are distinct and satisfy |r| < λ. 
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d) For p < 1/2, part c) yields that for r∗ = λ(1 − 2p), gI1Y1 (r
∗) = 1. By Lemma 7.1 in 

the notes, N is a stopping rule and applying Wald’s identity yields E(er∗SN ) = 1. It then 
follows from b) that 

1 = e r
∗α 

λ − 
λ

r∗ qα + e−r∗α 

λ + 
λ

r∗ (1 − qα), 

and thus 
1 − e−r∗α λ 

λ+r∗ 
qα = . 

er∗α λ − e−r∗α λ 
λ−r∗ λ+r∗ 

e) Note that E(SN ) = qα(α+1/λ)+(−α−1/λ)(1−qα) = (α +1/λ)(2qα −1) and E(I1Y1) = 
p/λ − (1 − p)/λ = (2p − 1)/λ. By Wald’s equality, E(N)E(I1Y1) = E(SN ), and therefore 

E(N) = 
(α + 1/λ)(2qα − 1) 

= 
(α + 1/λ)(2qα − 1) 

= 
(αλ + 1)(2qα − 1) 

,
E(I1Y1) (2p − 1)/λ 2p − 1 

where qα was found in part d). 

f) Here, it suffices to note that by the symmetry in the problem, E(N) for p > 1/2 must 
be the same as E(N) for p < 1/2 and is therefore given as in d). Another way to arrive at 
this conclusion is to replace all p by 1 − p and all qα by 1 − qα in the expression in d). 

g) For p = 0, qα = 0 and E(SN ) = −α −1/λ. By Wald’s equality, E(N)(−1/λ) = −α−1/λ. 
Thus, E(N) = αλ + 1. The same answer applies to p = 1 by symmetry. 

Note that the p ∈ {0, 1} scenario reduces to a Poisson process with rate λ. In particular, 
E(N) can be computed without any recourse to Wald’s equality or even stopping rules. It 
suffices to note that N = n if and only if there are exactly n − 1 Poisson arrivals in the 
segment [0, α]. Letting K be the number of Poisson arrivals in [0, α], it follows that 

∞ ∞ ∞

E(N) = nP(N = n) = nP(K = n − 1) = (k + 1)P(K = k) = E(K) + 1. 
n=0 n=0 k=1 

Since K has the Poisson distribution with mean αλ, the result follows.


f) (Bonus) From Wald’s identity, since E(Y1I1) = 0, we have E(S2 ) = E(N)var(I1Y1). By
N 
symmetry, qα = 1/2. Thus, 

1 1 α 2
E(S2 ) = E((α + Zα)2) + E((−α − Z−α)2) = E((α + Zα)2) = α2 + 2 + .N 2 2 λ λ2 

Since 
2

var(I1Y1) = E(I1
2Y1

2) − 0 = E(Y1
2) = 

λ2 , 

it follows that 

α2 + 2α
λ + 

λ
2 
2 

� 
λα 

�2 

E(N) = 2 = (λα/2)2 + λα + 1 = + 1 .
2 

λ2 
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Solution to Question 3 

a) We will associate the nth term Xn in the branching process {Xn; n ≥ 0} with the nth 
state Xn of a Markov chain {Xn; n ≥ 0}. This has a countable state space consisting of the 
integers 0, 1, . . . . The initial state X0 is 1. 

For each n ≥ 1, Xn+1 = 
PXn Yi,n. Thus Xn+1 is the sum of Xn IID rv’s {Y1,n} which i=1 

are given to be independent of all rv’s Yi,k for k < n. Thus, conditional on Xn (which 
determines the number of elements in the sum), Xn+1 is independent of all the rv’s Yi,k for 
k < n, and thus independent of X0,X1, . . . ,Xn−1. 

To show that {Xn; n ≥ 0} is a Markov chain, it remains to show that the transition proba­
bilities P {Xn+1 | Xn} do not depend on n. However, Xn+1 = 

PXn Yi,n is simply the sum i=1 
of Xn IID rv’s whose distribution is the same for all n. Thus 

i
( )

Pij = P 
X 

Y` = j , 
`=1 

where the Y` are IID with the same distribution as the Yi,n. 

b) The function Pij (n) is the probability that the chain reaches state j for the first time 
in exactly j trials starting in state i (this is called fij(n) in the text). It follows that 
Fij (n) = 

P
k
n 
=1 Pij (k) is the probability that that the chain reaches state j on any of the 

first n trials. Thus Fij(1) is the probability of ever reaching state j, and Fi0(1) is the 
probability of ever reaching state 0, i.e., the probability of extinction starting in state i. 
Since the process is started in state 1, the probability of extinction is p = F10(1). 

Next note that the process is extinguished immediately at the first trial if Y1,1 = 0. Thus 
P10(1) = P {Y = 0} > 0. It follows that 

F1,0(1) = 
X 

P1,0(k) > P {Y = 0} > 0 
k 

Finally, if Xn = i for some n, then the offspring of each of these i individuals will die out 
with probabiity p. Since the offspring of the different individuals at time n are independent 
of each other, the probability that all i of these families will die out is 

Fi0(1) = F i (1) = p i > 0.10

c) Since P {Y = 0} > 0, state 0 is the single member of a recurrent class and all other states 
are transient. This follows since all states have paths to 0 but no paths back. 

For the major case of interest, where P {Y = 1} > 0 and P {Y ≥ 2} > 0, there is a path 
from state 1 to arbitrarily high numbered states, and for each i, there is a transition from 
i to i − 1. One way this transition occurs is when one of the i individuals dies out and the 
others all have one descendant. Thus in this case, all the transient states are in a single 
class. 

You were not intended to analyze the classification of the transient states further, but the 
classification is as follows: If the possible values for Y have a greatest common denominator, 
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say d, greater than 1, then there is a class of transient states consisting of all multiples of 
d, and each other transient state lies in a singleton class. If the possible values for Y have 
a greatest common denominator equal to 1, than all transient states lie in the same class. 

d) Let E be the event that extinction occurs. Thus P {E} = p. Also, from part b, 

P {E | Xn = i} = Fi0(1) = p i 

Thus 
1

p = P {E} = 
X 

P {Xn = i} P {E | Xn = i}
i=0 

1
i= 

X 
P {Xn = i} p = E 

£
p Xn 

§

i=0 

This is a nice proof that E 
£
pXn 

§ 
= p for each n, but how does one go about guessing that the 

ianswer is p in order to construct the proof above? The first part, E 
£
pXn 

§ 
= 

P
i P {Xn =i} p

is a straightforward way to start the problem. Then associating pi with P {E | Xn = i} is 
a natural association given part b and given some understanding that this association is 
fundamental to understanding branching processes. 

e) 

i) Recall that Xn for n ≥ 1 is the sum of the number of offspring of each individual in 
Thus E [Xn Xn−1] = Y Xn−1. Since Y = 1, we see that {Xn; n ≥ 0} is not a Xn−1. | 6

martingale. 

ii) Parts ii and iii are very similar, with the constant Y used in one and the constant p 
Xnused in the other, so we first calculate E 

£
z zXn−1 , . . . , zX0 

§ 
for arbitrary z. The|

calculation is similar to that in part d. 

Xn XnE 
£
z z Xn−1 , . . . , z X0 

§ 
= E 

£
z 

§
| | Xn−1

Letting j be the sample value of Xn−1, Xn = 
Pj Y` and zXn = 

Qj Y` . These`=1 `=1 a
rv’s are independent, and thus 

j

E 
£
z Xn = j

§ 
= 

Y 
E 

£
z Y` 

§ 
= 

£
E 

£
z Y §§j| Xn−1 

`=1 

Thus {zXn ; n ≥ 0} is a martingale if and only if z = E 
£
zY 

§
. Now E 

£
zY 

§ 
= P

i P {Y = i} zi is the z-transform, say h(z), of the PDF of Y . It is a convex function 
of z and thus there can be at most two values of z satisfying this equation. The first 
is z = 1 and another, as can be seen from part d with n = 1, is z = p. By assumption, 
Y =6 1, and we now show that Y =6 p. First, since p ≤ 1, Y =6 p if Y > 1. Second 
if Y < 1, then p = 1, so in both cases, Y 6= p. Thus the process in part ii is not a 
martingale. 

iii) It was shown in part ii that {pXn ; n ≥ 0} is a martingale. 
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f (Bonus) If Y = 1, then {Xn; n ≥ 0} is a martingale (by the fact that the scaled proess 
{Xn/Y 

n; n ≥ 0} is a martingale. Thus it is also a submartingale and we can use the 
Kolmogorov submartingale inequality. This says that for any positive integer m, 

Ω æ
P max Xi ≥ 2 ≤ E [Xm] /2. 

0≤i≤m 

Since the Xn also form a martingale E [Xm] = E [X0] = 1 for all m. Thus we can go to the 
limit m →1, and get the upper bound 

Ω æ
P sup Xi ≥ 2 ≤ 1/2 

i<1 

If Y is binary with equiprobable values 0 and 2, then the process reaches the threshold on 
trial 1 with probability 1/2 and is extinguished on trial 1 with probability 1/2. 

g (Bonus) On trial 1, the process is extinguished with probability q0, crosses the threshold 
with probability q≥2 = 1 − q0 − q1 and lives to see another day with probability q1. On trial 
2, given Y = 1 on the first trial, the same thing happens. The threshold is crossed on trial 
2 with marginal probability q1q≥2. Extending the argument forever, 

P 

Ω 

sup Xn ≥ 2
æ 

= (q )[1 + q1 + q1
2 + ] = 

q≥2 =
1 − q0 − q1 

n≥1 
≥2 · · · 

1 − q1 1 − q1 
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