
Chapter 6 

MARKOV PROCESSES WITH

COUNTABLE STATE SPACES


6.1 Introduction 

Recall that a Markov chain is a discrete-time process {Xn; n � 0} for which the state at 
each time n � 1 is an integer-valued random variable (rv) that is statistically dependent 
on X0, . . .Xn�1 only through Xn�1. A countable-state Markov process1 (Markov process 
for short) is a generalization of a Markov chain in the sense that, along with the Markov 
chain {Xn; n � 1}, there is a randomly-varying holding interval in each state which is 
exponentially distributed with a parameter determined by the current state. 

To be more specific, let X0 =i, X1 =j, X2 = k, . . . , denote a sample path of the sequence 
of states in the Markov chain (henceforth called the embedded Markov chain). Then the 
holding interval Un between the time that state Xn�1 = ` is entered and Xn is entered is a 
nonnegative exponential rv with parameter ⌫`, i.e., for all u � 0, 

Pr{Un  u | Xn�1 = `} = 1 � exp(�⌫`u). (6.1) 

Furthermore, Un, conditional on Xn�1, is jointly independent of Xm for all m =6 n � 1 and 
of Um for all m = n.6
If we visualize starting this process at time 0 in state X0 = i, then the first transition of 
the embedded Markov chain enters state X1 = j with the transition probability Pij of the 
embedded chain. This transition occurs at time U1, where U1 is independent of X1 and 
exponential with rate ⌫i. Next, conditional on X1 = j, the next transition enters state 
X2 = k with the transition probability Pjk. This transition occurs after an interval U2, i.e., 
at time U1 + U2, where U2 is independent of X2 and exponential with rate ⌫j . Subsequent 
transitions occur similarly, with the new state, say Xn = i, determined from the old state, 
say Xn�1 = `, via P`i, and the new holding interval Un determined via the exponential rate 
⌫`. Figure 6.1 illustrates the statistical dependencies between the rv’s {Xn; n � 0} and 
{Un; n � 1}. 

1These processes are often called continuous-time Markov chains. 

262 



263 6.1. INTRODUCTION 

U1 U2 U3 U4 

�
�✓ 

�
�✓ 

�
�✓ 

�
�✓ 

� � � � 

X0 X1 
- X2 

- X3 
- -

Figure 6.1: The statistical dependencies between the rv’s of a Markov process. Each 
holding interval Ui, conditional on the current state Xi�1, is independent of all other 
states and holding intervals. 

The epochs at which successive transitions occur are denoted S1, S2, . . . , so we have S1 = 
U1, S2 = U1 + U2, and in general Sn = 

Pn Um for n � 1 wug S0 = 0. The state of a m=1 
Markov process at any time t > 0 is denoted by X(t) and is given by 

X(t) = Xn for Sn  t < Sn+1 for each n � 0. 

This defines a stochastic process {X(t); t � 0} in the sense that each sample point ! 2 ⌦ 
maps to a sequence of sample values of {Xn; n � 0} and {Sn; n � 1}, and thus into a sample 
function of {X(t); t � 0}. This stochastic process is what is usually referred to as a Markov 
process, but it is often simpler to view {Xn; n � 0}, {Sn; n � 1} as a characterization of 
the process. Figure 6.2 illustrates the relationship between all these quantities. 

� U1 
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-� U2 
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-

X0 = i X1 = j X2 = k 

0 X(t) = i S1 X(t) = j S2 X(t) = k S3 

Figure 6.2: The relationship of the holding intervals {Un; n � 1} and the epochs 
{Sn; n � 1} at which state changes occur. The state X(t) of the Markov process and 
the corresponding state of the embedded Markov chain are also illustrated. Note that 
if Xn = i, then X(t) = i for Sn  t < Sn+1 

This can be summarized in the following definition. 

Definition 6.1.1. A countable-state Markov process {X(t); t � 0} is a stochastic process 
mapping each nonnegative real number t to the nonnegative integer-valued rv X(t) in such 
a way that for each t � 0, 

n

X(t) = Xn for Sn  t < Sn+1; S0 = 0; Sn = 
X 

Um for n � 1, (6.2) 
m=1 

where {Xn; n � 0} is a Markov chain with a countably infinite or finite state space and 
each Un, given Xn�1 = i, is exponential with rate ⌫i > 0 and is conditionally independent 
of all other Um and Xm. 

The tacit assumptions that the state space is the set of nonnegative integers and that the 
process starts at t = 0 are taken only for notational simplicity but will serve our needs here. 

We assume throughout this chapter (except in a few places where specified otherwise) that 
the embedded Markov chain has no self transitions, i.e., Pii = 0 for all states i. One 
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reason for this is that such transitions are invisible in {X(t); t � 0}. Another is that with 
this assumption, the sample functions of {X(t); t � 0} and the joint sample functions of 
{Xn; n � 0} and {Un; n � 1} uniquely specify each other. 

We are not interested for the moment in exploring the probability distribution of X(t) 
for given values of t, but one important feature of this distribution is that for any times 
t > ⌧ > 0 and any states i, j, 

Pr{X(t)=j | X(⌧)=i, {X(s) = x(s); s < ⌧}} = Pr{X(t�⌧)=j | X(0)=i} . (6.3) 

This property arises because of the memoryless property of the exponential distribution. 
That is, if X(⌧) = i, it makes no di↵erence how long the process has been in state i before 
⌧ ; the time to the next transition is still exponential with rate ⌫i and subsequent states and 
holding intervals are determined as if the process starts in state i at time 0. This will be seen 
more clearly in the following exposition. This property is the reason why these processes 
are called Markov, and is often taken as the defining property of Markov processes. 

Example 6.1.1. The M/M/1 queue: An M/M/1 queue has Poisson arrivals at a rate 
denoted by � and has a single server with an exponential service distribution of rate µ > � 
(see Figure 6.3). Successive service times are independent, both of each other and of arrivals. 
The state X(t) of the queue is the total number of customers either in the queue or in 
service. When X(t) = 0, the time to the next transition is the time until the next arrival, 
i.e., ⌫0 = �. When X(t) = i, i � 1, the server is busy and the time to the next transition 
is the time until either a new arrival occurs or a departure occurs. Thus ⌫i = � + µ. For 
the embedded Markov chain, P01 = 1 since only arrivals are possible in state 0, and they 
increase the state to 1. In the other states, Pi,i�1 = µ/(�+µ) and Pi,i+1 = �/(�+µ). 

0 
�n 

1 �+µ �/(�+µ) �+µ �/(�+µ) �+µ
z z zX 3n . . . X 1n X 2nXy Xy Xy 

µ/(�+µ) µ/(�+µ) µ/(�+µ) 

Figure 6.3: The embedded Markov chain for an M/M/1 queue. Each node i is labeled 
with the corresponding rate ⌫i of the exponentially distributed holding interval to the 
next transition. Each transition, say i to j, is labeled with the corresponding transition 
probability Pij in the embedded Markov chain. 

The embedded Markov chain is a Birth-death chain, and its steady state probabilities can 
be calculated easily using (5.25). The result is 

⇡0 =
1 � ⇢ 

where ⇢ = 
2 µ 

⇡n =
1 �

2 
⇢2 

⇢ n�1 for n � 1. (6.4) 

Note that if � << µ, then ⇡0 and ⇡1 are each close to 1/2 (i.e., the embedded chain mostly 
alternates between states 0 and 1, and higher ordered states are rarely entered), whereas 
because of the large holding interval in state 0, the process spends most of its time in state 
0 waiting for arrivals. The steady-state probability ⇡i of state i in the embedded chain 
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is the long-term fraction of the total transitions that go to state i. We will shortly learn 
how to find the long term fraction of time spent in state i as opposed to this fraction of 
transitions, but for now we return to the general study of Markov processes. 

The evolution of a Markov process can be visualized in several ways. We have already 
looked at the first, in which for each state Xn�1 = i in the embedded chain, the next state 
Xn is determined by the probabilities {Pij ; j � 0} of the embedded Markov chain, and the 
holding interval Un is independently determined by the exponential distribution with rate 
⌫i. 

For a second viewpoint, suppose an independent Poisson process of rate ⌫i > 0 is associated 
with each state i. When the Markov process enters a given state i, the next transition 
occurs at the next arrival epoch in the Poisson process for state i. At that epoch, a new 
state is chosen according to the transition probabilities Pij . Since the choice of next state, 
given state i, is independent of the interval in state i, this view describes the same process 
as the first view. 

For a third visualization, suppose, for each pair of states i and j, that an independent Poisson 
process of rate ⌫iPij is associated with a possible transition to j conditional on being in i. 
When the Markov process enters a given state i, both the time of the next transition and 
the choice of the next state are determined by the set of i to j Poisson processes over all 
possible next states j. The transition occurs at the epoch of the first arrival, for the given i, 
to any of the i to j processes, and the next state is the j for which that first arrival occurred. 
Since such a collection of independent Poisson processes is equivalent to a single process of 
rate ⌫i followed by an independent selection according to the transition probabilities Pij , 
this view again describes the same process as the other views. 

It is convenient in this third visualization to define the rate from any state i to any other 
state j as 

qij = ⌫iPij . 

If we sum over j, we see that ⌫i and Pij are also uniquely determined by {qij ; i, j � 0} as 

⌫i = 
X

qij ; Pij = qij /⌫i. (6.5) 
j 

This means that the fundamental characterization of the Markov process in terms of the 
Pij and the ⌫i can be replaced by a characterization in terms of the set of transition rates 
qij . In many cases, this is a more natural approach. For the M/M/1 queue, for example, 
qi,i+1 is simply the arrival rate �. Similarly, qi,i�1 is the departure rate µ when there are 
customers to be served, i.e., when i > 0. Figure 6.4 shows Figure 6.3 incorporating this 
notational simplification. 

Note that the interarrival density for the Poisson process, from any given state i to other 
state j, is given by qij exp(�qijx). On the other hand, given that the process is in state 
i, the probability density for the interval until the next transition, whether conditioned on 
the next state or not, is ⌫i exp(�⌫ix) where ⌫i = 

P
j qij . One might argue, incorrectly, that, 

conditional on the next transition being to state j, the time to that transition has density 
qij exp(�qijx). Exercise 6.1 uses an M/M/1 queue to provide a guided explanation of why 
this argument is incorrect. 
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Figure 6.4: The Markov process for an M/M/1 queue. Each transition (i, j) is labelled 
with the corresponding transition rate qij . 

6.1.1 The sampled-time approximation to a Markov process 

As yet another way to visualize a Markov process, consider approximating the process by 
viewing it only at times separated by a given increment size �. The Poisson processes above 
are then approximated by Bernoulli processes where the transition probability from i to j 
in the sampled-time chain is defined to be qij � for all j =6 i. 

The Markov process is then approximated by a Markov chain. Since each �qij decreases 
with decreasing �, there is an increasing probability of no transition out of any given state in 
the time increment �. These must be modeled with self-transition probabilities, say Pii(�) 
which must satisfy 

Pii(�) = 1 � 
X

qij � = 1 � ⌫i� for each i � 0. 
j 

This is illustrated in Figure 6.5 for the M/M/1 queue. Recall that this sampled-time M/M/1 
Markov chain was analyzed in Section 5.4 and the steady-state probabilities were shown to 
be 

pi(�) = (1 � ⇢)⇢ i for all i � 0 where ⇢ = �/µ. (6.6) 

We have denoted the steady-state probabilities here by pi(�) to avoid confusion with the 
steady-state probabilities for the embedded chain. As discussed later, the steady-state 
probabilities in (6.6) do not depend on �, so long as � is small enough that the self-transition 
probabilities are nonnegative. 

z z 
0n Xz 

1ny X
2ny X

3n . . . 
Xy X X

O µ� O µ� O µ� O


1 � �� 1 � (�+µ)� 1 � (�+µ)� 1 � (�+µ)� 

Figure 6.5: Approximating an M/M/1 queue by a sampled-time Markov chain. 

This sampled-time approximation is an approximation in two ways. First, transitions oc­
cur only at integer multiples of the increment �, and second, qij � is an approximation to 
Pr{X(�)=j | X(0)=i}. From (6.3), Pr{X(�)=j | X(0) = i} = qij� + o(�), so this second 
approximation is increasingly good as � ! 0. 

As observed above, the steady-state probabilities for the sampled-time approximation to an 
M/M/1 queue do not depend on �. As seen later, whenever the embedded chain is positive 
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recurrent and a sampled-time approximation exists for a Markov process, then the steady-
state probability of each state i is independent of � and represents the limiting fraction of 
time spent in state i with probability 1. 

Figure 6.6 illustrates the sampled-time approximation of a generic Markov process. Note 
that Pii(�) is equal to 1 � �⌫i for each i in any such approximation, and thus it is necessary 
for � to be small enough to satisfy ⌫i�  1 for all i. For a finite state space, this is satisfied 
for any �  [maxi ⌫i]�1 . For a countably infinite state space, however, the sampled-time 
approximation requires the existence of some finite B such that ⌫i  B for all i. The 
consequences of having no such bound are explored in the next section. 

q13 �q13 

q31 �q31 
j n⇡

1n - 2n -
j n n - 2n -3 1 

⇡ 
3q12 q23 �q12 �q23

O O O 
⌫1 = q12 +q13 ⌫2 = q31 

⌫2 = q23 1��⌫1 1 � �⌫2 1 � �⌫3 

Figure 6.6: Approximating a generic Markov process by its sampled-time Markov chain. 

6.2 Steady-state behavior of irreducible Markov processes 

Definition 6.2.1 (Irreducible Markov processes). An irreducible Markov process is a 
Markov process for which the embedded Markov chain is irreducible (i.e., all states are in 
the same class). 

The analysis in this chapter is restricted almost entirely to irreducible Markov processes. 
The reason for this restriction is not that Markov processes with multiple classes of states 
are unimportant, but rather that they can usually be best understood by first looking at 
the embedded Markov chains for the various classes making up that overall chain. 

We will ask the same types of steady-state questions for Markov processes as we asked 
about Markov chains. In particular, under what conditions is there a set of steady-state 
probabilities, p0, p1, . . . with the property that for any given starting state i, the limiting 
fraction of of time spent in any given state j is pj with probability 1? Do these probabilities 
also have the property that pj = limt!1 Pr{X(t) = j | X0 = i}? 

We will find that simply having a positive-recurrent embedded Markov chain is not quite 
enough to ensure that such a set of probabilities exists. It is also necessary for the embedded-
chain steady-state probabilities {⇡i; i � 0} and the holding-interval parameters {⌫i; i � 0}
to satisfy 

P
i ⇡i/⌫i < 1. We will interpret this latter condition as asserting that the limiting 

long-term rate at which transitions occur must be strictly positive. Finally we will show 
that when these conditions are satisfied, the steady-state probabilities for the process are 
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related to those of the embedded chain by 

pj = P⇡

k

j 

⇡

/

k

⌫

/
j 

⌫k 
. (6.7) 

Definition 6.2.2. The steady-state process probabilities, p0, p1, . . . for a Markov process 
are a set of numbers satisfying (6.7), where {⇡i; i � 0} and {⌫i; i � 0} are the steady-state 
probabilities for the embedded chain and the holding-interval rates respectively. 

As one might guess, the appropriate approach to answering these questions comes from 
applying renewal theory to various renewal processes associated with the Markov process. 
Many of the needed results for this have already been developed in looking at the steady-
state behavior of countable-state Markov chains. 

We start with a very technical lemma that will perhaps appear obvious, and the reader is 
welcome to ignore the proof until perhaps questioning the issue later. The lemma is not 
restricted to irreducible processes, although we only use it in that case. 

Lemma 6.2.1. Consider a Markov process for which the embedded chain starts in some 
given state i. Then the holding time intervals, U1, U2, . . . are all rv’s. Let Mi(t) be the 
number of transitions made by the process up to and including time t. Then with probability 
1 (WP1), 

X 

lim Mi(t) = 1. (6.8)
t!1 

Proof: The first holding interval U1 is exponential with rate ⌫i > 0, so it is clearly a rv 
(i.e., not defective). In general the state after the (n � 1)th transition has the PMF P n�1 ,ij
so the complementary distribution function of Un is 

k

lim 

X 
Pr{Un > u} = 

k

Pij
n�1 

1X 
exp(�⌫j u). 

k!1 
j=1 

Pij
n�1 exp(�⌫j u) + P n+1 

ij for every k.


j=1 j=k+1 

For each k, the first sum above approaches 0 with increasing u and the second sum ap­
proaches 0 with increasing k so the limit as u !1 must be 0 and Un is a rv. 

It follows that each Sn = U1 + + Un is also a rv. Now {Sn; n � 1} is the sequence of · · · 
arrival epochs in an arrival process, so we have the set equality {Sn  t} = {Mi(t) � n}
for each choice of n. Since Sn is a rv, we have limt!1 Pr{Sn  t} = 1 for each n. Thus 
limt!1 Pr{Mi(t) � n} = 1 for all n. This means that the set of sample points ! for which 
limt!1 Mi(t,!) < n has probability 0 for all n, and thus limt!1 Mi(t,!) = 1 WP1. 

6.2.1 Renewals on successive entries to a given state 

For an irreducible Markov process with X0 = i, let Mij (t) be the number of transitions into 
state j over the interval (0, t]. We want to find when this is a delayed renewal counting 
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process. It is clear that the sequence of epochs at which state j is entered form renewal 
points, since they form renewal points in the embedded Markov chain and the holding 
intervals between transitions depend only on the current state. The questions are whether 
the first entry to state j must occur within some finite time, and whether recurrences to j 
must occur within finite time. The following lemma answers these questions for the case 
where the embedded chain is recurrent (either positive recurrent or null recurrent). 

Lemma 6.2.2. Consider a Markov process with an irreducible recurrent embedded chain 
{Xn; n � 0}. Given X0 = i, let {Mij(t); t � 0} be the number of transitions into a given 
state j in the interval (0, t]. Then {Mij (t); t � 0} is a delayed renewal counting process (or 
an ordinary renewal counting process if j = i). 

Proof: Given X0 = i, let Nij (n) be the number of transitions into state j that occur in the 
embedded Markov chain by the nth transition of the embedded chain. From Lemma 5.1.4, 
{Nij (n); n � 0} is a delayed renewal process, so from Lemma 4.8.2, limn!1 Nij(n) = 1
with probability 1. Note that Mij (t) = Nij (Mi(t)), where Mi(t) is the total number of state 
transitions (between all states) in the interval (0, t]. Thus, with probability 1, 

lim Mij (t) = lim Nij (Mi(t)) = lim Nij (n) = 1. 
t!1 t!1 n!1 

where we have used Lemma 6.2.1, which asserts that limt!1 Mi(t) = 1 with probability 
1. 

It follows that the interval W1 until the first transition to state j, and the subsequent 
interval W2 until the next transition to state j, are both finite with probability 1. Subsequent 
intervals have the same distribution as W2, and all intervals are independent, so {Mij (t); t �
0} is a delayed renewal process with inter-renewal intervals {Wk; k � 1}. If i = j, then 
all Wk are identically distributed and we have an ordinary renewal process, completing the 
proof. 

The inter-renewal intervals W2,W3, . . . for {Mij (t); t � 0} above are well-defined nonnega­
tive IID rv’s whose distribution depends on j but not i. They either have an expectation as 
a finite number or have an infinite expectation. In either case, this expectation is denoted 
as E [W (j)] = W (j). This is the mean time between successive entries to state j, and we 
will see later that in some cases this mean time can be infinite. 

6.2.2 The limiting fraction of time in each state 

In order to study the fraction of time spent in state j, we define a delayed renewal-reward 
process, based on {Mij (t); t � 0}, for which unit reward is accumulated whenever the 
process is in state j. That is (given X0 = i), Rij (t) = 1 when X(t) = j and Rij (t) = 0 
otherwise. (see Figure 6.7). Given that transition n � 1 of the embedded chain enters state 
j, the interval Un is exponential with rate ⌫j , so E [Un | Xn�1 =j] = 1/⌫j . 

Let pj (i) be the limiting time-average fraction of time spent in state j. We will see later 
that such a limit exists WP1, that the limit does not depend on i, and that it is equal to 
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Xn�1=j Xn 6=j Xn+1 6=j Xn+2=j Xn+3 6=j 

Un -� 
Rij (t) 

Wk 
-� 

Figure 6.7: The delayed renewal-reward process {Rij (t); t � 0} for time in state j. 
The reward is one whenever the process is in state j, i.e., Rij (t) = I{X(t)=j}. A renewal 
occurs on each entry to state j, so the reward starts at each such entry and continues 
until a state transition, assumed to enter a state other than j. The reward then ceases 
until the next renewal, i.e., the next entry to state j. The figure illustrates the kth 
inter-renewal interval, of duration Wk, which is assumed to start on the n � 1st state 
transition. The expected interval over which a reward is accumulated is ⌫j and the 
expected duration of the inter-renewal interval is W (j). 

the steady-state probability pj in (6.7). Since U(j) = 1/⌫j , Theorems 4.4.1 and 4.8.4, for 
ordinary and delayed renewal-reward processes respectively, state that2 

t Rij (⌧ )d⌧ 
pj(i) =	 lim 

R
0 WP1 (6.9)

t!1 t 

= 
U(j)	

= 
1 

. (6.10)
W (j) ⌫j W (j)

This shows that the limiting time average, pj (i), exists with probability 1 and is independent 
of the starting state i. We show later that it is the steady-state process probability given by 
(6.7). We can also investigate the limit, as t !1, of the probability that X(t) = j. This is 
equal to limt!1 E [R(t)] for the renewal-reward process above. Because of the exponential 
holding intervals, the inter-renewal times are non-arithmetic, and from Blackwell’s theorem, 
in the form of (4.105), 

1
lim Pr{X(t) = j} = = pj(i).	 (6.11)
t!1 ⌫j W (j) 

We summarize these results in the following lemma. 

Lemma 6.2.3. Consider an irreducible Markov process with a recurrent embedded Markov 
chain starting in X0 = i. Then with probability 1, the limiting time average in state j is 
given by pj (i) = 1 . This is also the limit, as t !1, of Pr{X(t) = j}. 

⌫j W (j) 

6.2.3 Finding {pj (i); j � 0} in terms of {⇡j; j � 0} 

Next we must express the mean inter-renewal time, W (j), in terms of more accessible quan­
tities that allow us to show that pj (i) = pj where pj is the steady-state process probability 

2Theorems 4.4.1 and 4.8.4 do not cover the case where W (j) = 1, but, since the expected reward per 
renewal interval is finite, it is not hard to verify (6.9) in that special case. 
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of Definition 6.2.2. We now assume that the embedded chain is not only recurrent but 
also positive recurrent with steady-state probabilities {⇡j ; j � 0}. We continue to as­
sume a given starting state X0 = i. Applying the strong law for delayed renewal processes 
(Theorem 4.8.1) to the Markov process, 

lim Mij(t)/t = 1/W (j) WP1. (6.12)
t!1 

As before, Mij(t) = Nij (Mi(t)). Since limt!1 Mi(t) = 1 with probability 1, 

lim 
Mij (t) = lim 

Nij (Mi(t)) = lim 
Nij (n)

= ⇡j WP1. (6.13)
t!1 Mi(t) t!1 Mi(t) n!1 n 

In the last step, we applied the same strong law to the embedded chain. Combining (6.12) 
and (6.13), the following equalities hold with probability 1. 

1 Mij (t)= lim 
W (j) t!1 t 

Mij (t) Mi(t)= lim 
t!1 Mi(t) t 

= ⇡j lim 
Mi(t) . (6.14)

t!1 t 

This tells us that W (j)⇡j is the same for all j. Also, since ⇡j > 0 for a positive recurrent 
chain, it tell us that if W (j) < 1 for one state j, it is finite for all states. Also these 
expected recurrence times are finite if and only if limt!1 Mi(t)/t > 0. Finally, it says 
implicitly that limt!1 Mi(t)/t exists WP1 and has the same value for all starting states i. 

There is relatively little left to do, and the following theorem does most of it. 

Theorem 6.2.1. Consider an irreducible Markov process with a positive recurrent embed­
ded Markov chain. Let {⇡j ; j � 0} be the steady-state probabilities of the embedded chain 
and let X0 = i be the starting state. Then, with probability 1, the limiting time-average 
fraction of time spent in any arbitrary state j is the steady-state process probability in (6.7), 
i.e., 

pj (i) = pj = P⇡

k

j 

⇡

/

k

⌫

/
j 

⌫k 
. (6.15) 

The expected time between returns to state j is 

W (j) = 

P
k ⇡k/⌫k , (6.16) 
⇡j 

and the limiting rate at which transitions take place is independent of the starting state and 
given by 

lim 
Mi(t) =

1 
WP1. (6.17)

t!1 t 
P

k ⇡k/⌫k 
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Discussion: Recall that pj (i) was defined as a time average WP1, and we saw earlier 
that this time average existed with a value independent of i. The theorem states that 
this time average (and the limiting ensemble average) is given by the steady-state process 
probabilities in (6.7). Thus, after the proof, we can stop distinguishing these quantities. 

At a superficial level, the theorem is almost obvious from what we have done. In particular, 
substituting (6.14) into (6.9), we see that 

pj (i) = 
⇡j lim 

Mi(t) WP1. (6.18)
⌫j t!1 t 

Since pj (i) = limt!1 Pr{X(t) = j}, and since X(t) is in some state at all times, we would 
conjecture (and even insist if we didn’t read on) that 

P
j pj (i) = 1. Adding that condition to 

normalize (6.18), we get (6.15), and (6.16) and (6.17) follow immediately. The trouble is that 
if 
P

j ⇡j /⌫j = 1, then (6.15) says that pj = 0 for all j, and (6.17) says that lim Mi(t)/t = 0, 
i.e., the process ‘gets tired’ with increasing t and the rate of transitions decreases toward 
0. The rather technical proof to follow deals with these limits more carefully. 

Proof: We have seen in (6.14) that limt!1 Mi(t)/t is equal to a constant, say ↵, with 
probability 1 and that this constant is the same for all starting states i. We first consider 
the case where ↵ > 0. In this case, from (6.14), W (j) < 1 for all j. Choosing any given j 
and any positive integer `, consider a renewal-reward process with renewals on transitions 
to j and a reward R ̀  (t) = 1 when X(t)  `. This reward is independent of j and equal to ijP` Rik(t). Thus, from (6.9), we have k=1 

t ` R ̀  (⌧ )d⌧0 ijlim 

R
= 
X

pk(i). (6.19)
t!1 t 

k=1 

If we let E 
h
R`

j 

i 
be the expected reward over a renewal interval, then, from Theorem 4.8.4, 

tR
0 Rij

` (⌧)d⌧ E 
h
R`

j

i 
lim = . (6.20)
t!1 t U j 

Note that E 
h
R` 
i 

above is non-decreasing in ` and goes to the limit W (j) as ` !1. Thus, j 

combining (6.19) and (6.20), we see that 

` 

lim 
X

pk(i) = 1. 
`!1 

k=1 

With this added relation, (6.15), (6.16), and (6.17) follow as in the discussion. This com­
pletes the proof for the case where ↵ > 0. 

For the remaining case, where limt!1 Mi(t)/t = ↵ = 0, (6.14) shows that W (j) = 1 for 
all j and (6.18) then shows that pj(i) = 0 for all j. We give a guided proof in Exercise 6.6 
that, for ↵ = 0, we must have 

P
i ⇡i/⌫i = 1. It follows that (6.15), (6.16), and (6.17) are 

all satisfied. 
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This has been quite a di�cult proof for something that might seem almost obvious for simple 
examples. However, the fact that these time-averages are valid over all sample points with 
probability 1 is not obvious and the fact that ⇡jW (j) is independent of j is certainly not 
obvious. 

The most subtle thing here, however, is that if 
P

i ⇡i/⌫i = 1, then pj = 0 for all states j. 
This is strange because the time-average state probabilities do not add to 1, and also strange 
because the embedded Markov chain continues to make transitions, and these transitions, 
in steady state for the Markov chain, occur with the probabilities ⇡i. Example 6.2.1 and 
Exercise 6.3 give some insight into this. Some added insight can be gained by looking at 
the embedded Markov chain starting in steady state, i.e., with probabilities {⇡i; i � 0}. 
Given X0 = i, the expected time to a transition is 1/⌫i, so the unconditional expected time 
to a transition is 

P
i ⇡i/⌫i, which is infinite for the case under consideration. This is not a 

phenomenon that can be easily understood intuitively, but Example 6.2.1 and Exercise 6.3 
will help. 

6.2.4 Solving for the steady-state process probabilities directly 

Let us return to the case where 
P

k ⇡k/⌫k < 1, which is the case of virtually all applications. 
We have seen that a Markov process can be specified in terms of the time-transitions 
qij = ⌫iPij , and it is useful to express the steady-state equations for pj directly in terms 
of qij rather than indirectly in terms of the embedded chain. As a useful prelude to this, 
we first express the ⇡j in terms of the pj . Denote 

P
k ⇡k/⌫k as � < 1. Then, from (6.15), 

pj = ⇡j /⌫j �, so ⇡j = pj ⌫j �. Expressing this along with the normalization 
P

k ⇡k = 1, we 
obtain 

⇡i = 
pi⌫i . (6.21)P
k pk⌫k 

Thus, � = 1/ 
P

k pk⌫k, so 

X
⇡k/⌫k = P

k 

1 
pk⌫k 

. (6.22) 
k 

We can now substitute ⇡i as given by (6.21) into the steady-state equations for the embedded 
Markov chain, i.e., ⇡j = 

P
i ⇡iPij for all j, obtaining 

pj ⌫j = 
X

pi⌫iPij 

i 

for each state j. Since ⌫iPij = qij , 

pj ⌫j = 
X

piqij ; 
X

pi = 1. (6.23) 
i i 

This set of equations is known as the steady-state equations for the Markov process. The 
normalization condition 

P
i pi = 1 is a consequence of (6.22) and also of (6.15). Equation 

(6.23) has a nice interpretation in that the term on the left is the steady-state rate at which 
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transitions occur out of state j and the term on the right is the rate at which transitions 
occur into state j. Since the total number of entries to j must di↵er by at most 1 from the 
exits from j for each sample path, this equation is not surprising. 

The embedded chain is positive recurrent, so its steady-state equations have a unique so­
lution with all ⇡i > 0. Thus (6.23) also has a unique solution with all pi > 0 under the 
the added condition that 

P
i ⇡i/⌫i < 1. However, we would like to solve (6.23) directly 

without worrying about the embedded chain. 

If we find a solution to (6.23), however, and if 
P

i pi⌫i < 1 in that solution, then the cor­
responding set of ⇡i from (6.21) must be the unique steady-state solution for the embedded 
chain. Thus the solution for pi must be the corresponding steady-state solution for the 
Markov process. This is summarized in the following theorem. 

Theorem 6.2.2. Assume an irreducible Markov process and let {pi; i � 0} be a solution 
to (6.23). If 

P
i pi⌫i < 1, then, first, that solution is unique, second, each pi is positive, 

and third, the embedded Markov chain is positive recurrent with steady-state probabilities 
satisfying (6.21). Also, if the embedded chain is positive recurrent, and 

P
i ⇡i/⌫i < 1 then 

the set of pi satisfying (6.15) is the unique solution to (6.23). 

6.2.5 The sampled-time approximation again 

For an alternative view of the probabilities {pi; i � 0}, consider the special case (but the 
typical case) where the transition rates {⌫i; i � 0} are bounded. Consider the sampled-time 
approximation to the process for a given increment size �  [maxi ⌫i]�1 (see Figure 6.6). Let 
{pi(�); i � 0} be the set of steady-state probabilities for the sampled-time chain, assuming 
that they exist. These steady-state probabilities satisfy 

pj (�) = 
X

pi(�)qij � + pj (�)(1 � ⌫j �); pj (�) � 0; 
X 

pj (�) = 1. (6.24) 
i=j j6

The first equation simplifies to pj (�)⌫j = 
P

i=j pi(�)qij , which is the same as (6.23). It6
follows that the steady-state probabilities {pi; i � 0} for the process are the same as the 
steady-state probabilities {pi(�); i � 0} for the sampled-time approximation. Note that 
this is not an approximation; pi(�) is exactly equal to pi for all values of �  1/ supi ⌫i. We 
shall see later that the dynamics of a Markov process are not quite so well modeled by the 
sampled time approximation except in the limit � ! 0. 

6.2.6 Pathological cases 

Example 6.2.1 (Zero transition rate). Consider the Markov process with a positive-
recurrent embedded chain in Figure 6.8. This models a variation of an M/M/1 queue in 
which the server becomes increasingly rattled and slow as the queue builds up, and the 
customers become almost equally discouraged about entering. The downward drift in the 
transitions is more than overcome by the slow-down in large numbered states. Transitions 
continue to occur, but the number of transitions per unit time goes to 0 with increasing 
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time. Although the embedded chain has a steady-state solution, the process can not be 
viewed as having any sort of steady state. Exercise 6.3 gives some added insight into this 
type of situation. 

1 1 2�1 0.4 2�2 0.4 2�3 

z z zn X n X n X 3n . . . 0 X 1 X 2 Xy y y 
0.6 0.6 0.6 

Figure 6.8: The Markov process for a variation on M/M/1 where arrivals and services 
get slower with increasing state. Each node i has a rate ⌫i = 2�i . The embedded chain 
transition probabilities are Pi,i+1 = 0.4 for i � 1 and Pi,i�1 = 0.6 for i � 1, thus ensuring 
that the embedded Markov chain is positive recurrent. Note that qi,i+1 > qi+1,i, thus 
ensuring that the Markov process drifts to the right. 

It is also possible for (6.23) to have a solution for {pi; i � 0} with 
P

i pi = 1, but 
P

i pi⌫i = 
1. This is not possible for a positive recurrent embedded chain, but is possible both if the 
embedded Markov chain is transient and if it is null recurrent. A transient chain means 
that there is a positive probability that the embedded chain will never return to a state 
after leaving it, and thus there can be no sensible kind of steady-state behavior for the 
process. These processes are characterized by arbitrarily large transition rates from the 
various states, and these allow the process to transit through an infinite number of states 
in a finite time. 

Processes for which there is a non-zero probability of passing through an infinite number 
of states in a finite time are called irregular. Exercises 6.8 and 6.7 give some insight into 
irregular processes. Exercise 6.9 gives an example of a process that is not irregular, but 
for which (6.23) has a solution with 

P
i pi = 1 and the embedded Markov chain is null 

recurrent. We restrict our attention in what follows to irreducible Markov chains for which 
(6.23) has a solution, 

P 
pi = 1, and 

P 
pi⌫i < 1. This is slightly more restrictive than 

necessary, but processes for which 
P

i pi⌫i = 1 (see Exercise 6.9) are not very robust. 

6.3 The Kolmogorov di↵erential equations 

Let Pij(t) be the probability that a Markov process {X(t); t � 0} is in state j at time t 
given that X(0) = i, 

Pij (t) = P {X(t)=j | X(0)=i}. (6.25) 

Pij (t) is analogous to the nth order transition probabilities Pij
n for Markov chains. We have 

already seen that limt!1 Pij(t) = pj for the case where the embedded chain is positive 
recurrent and 

P
i ⇡i/⌫i < 1. Here we want to find the transient behavior, and we start 

by deriving the Chapman-Kolmogorov equations for Markov processes. Let s and t be 
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arbitrary times, 0 < s < t. By including the state at time s, we can rewrite (6.25) as 

=
X

Pij (t) 
k 

Pr{X(t)=j, X(s)=k | X(0)=i}


=
X 

k 

Pr{X(s)=k | X(0)=i} Pr{X(t)=j | X(s)=k} ; all i, j, (6.26)


where we have used the Markov condition, (6.3). Given that X(s) = k, the residual time 
until the next transition after s is exponential with rate ⌫k, and thus the process starting 
at time s in state k is statistically identical to that starting at time 0 in state k. Thus, for 
any s, 0  s  t, we have 

P {X(t)=j | X(s)=k} = Pkj (t � s). 

Substituting this into (6.26), we have the Chapman-Kolmogorov equations for a Markov 
process, 

Pij (t) =
X


Pik(s)Pkj (t � s). (6.27) 
k 

These equations correspond to (3.8) for Markov chains. We now use these equations to de­
rive two types of sets of di↵erential equations for Pij(t). The first are called the Kolmogorov 
forward di↵erential equations, and the second the Kolmogorov backward di↵erential equa­
tions. The forward equations are obtained by letting s approach t from below, and the 
backward equations are obtained by letting s approach 0 from above. First we derive the 
forward equations. 

For t � s small and positive, Pkj(t � s) in (6.27) can be expressed as (t�s)qkj + o(t�s) for 
k =6 j. Similarly, Pjj (t � s) can be expressed as 1 � (t�s)⌫j + o(s). Thus (6.27) becomes 

Pij (t) =
X


[Pik(s)(t � s)qkj ] + Pij (s)[1 � (t � s)⌫j ] + o(t � s) (6.28) 
k=j6

We want to express this, in the limit s ! t, as a di↵erential equation. To do this, subtract 
Pij (s) from both sides and divide by t � s. 

Pij (t) � Pij (s) 
t � s


X
= (Pik(s)qkj) � Pij (s)⌫j + 

o(s) 
s


k=j6

Taking the limit as s ! t from below,3 we get the Kolmogorov forward equations, 

dPij (t) 
dt


X
= (Pik(t)qkj ) � Pij (t)⌫j , (6.29) 

k=j6

The first term on the right side of (6.29) is the rate at which transitions occur into state j 
at time t and the second term is the rate at which transitions occur out of state j. Thus 
the di↵erence of these terms is the net rate at which transitions occur into j, which is the 
rate at which Pij (t) is increasing at time t. 

3We have assumed that the sum and the limit in (6.3) can be interchanged. This is certainly valid if the 
state space is finite, which is the only case we analyze in what follows. 
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Example 6.3.1 (A queueless M/M/1 queue). Consider the following 2-state Markov 
process where q01 = � and q10 = µ. 

X 1nz0nXy 
µ 

This can be viewed as a model for an M/M/1 queue with no storage for waiting customers. 
When the system is empty (state 0), memoryless customers arrive at rate �, and when the 
server is busy, an exponential server operates at rate µ, with the system returning to state 
0 when service is completed. 

To find P01(t), the probability of state 1 at time t conditional on state 0 at time 0, we use 
the Kolmogorov forward equations for P01(t), getting 

dP01(t) = P00(t)q01 � P01(t)⌫1 = P00(t)� � P01(t)µ.
dt 

Using the fact that P00(t) = 1 � P01(t), this becomes 

dP01(t) = � � P01(t)(� + µ). 
dt 

Using the boundary condition P01(0) = 0, the solution is 

P01(t) = 
h
1 � e�(�+µ)t

i 
(6.30) 

Thus P01(t) is 0 at t = 0 and increases as t !1 to its steady-state value in state 1, which 
is �/(� + µ). 

In general, for any given starting state i in a Markov process with M states, (6.29) provides 
a set of M simultaneous linear di↵erential equations, one for each j, 1  j  M. As we 
saw in the example, one of these is redundant because 

PM Pij (t) = 1. This leaves M � 1j=1 
simultaneous linear di↵erential equations to be solved. 

For more than 2 or 3 states, it is more convenient to express (6.29) in matrix form. Let 
[P (t)] (for each t > 0) be an M by M matrix whose i, j element is Pij(t). Let [Q] be an M 
by M matrix whose i, j element is qij for each i =6 j and �⌫j for i = j. Then (6.29) becomes 

d[P (t)] 
= [P (t)][Q]. (6.31)

dt 

For Example 6.3.1, Pij (t) can be calculated for each i, j as in (6.30), resulting in 

2 
µ + � e�(�+µ)t � � e�(�+µ)t 

3 2 
� 

3 
[P (t)] = 64 �+

µ

µ �+

�

µ 

e�(�+µ)t

�+

�

µ � �+

�

µ 

e�(�+µ)t 

75 [Q] = 64 �� 75
�+µ + �+µ �+µ � �+µ µ �µ 

In order to provide some insight into the general solution of (6.31), we go back to the 
sampled time approximation of a Markov process. With an increment of size � between 
samples, the probability of a transition from i to j, i =6 j, is qij� +o(�), and the probability 
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of remaining in state i is 1 � ⌫i� +o(�). Thus, in terms of the matrix [Q] of transition rates, 
the transition probability matrix in the sampled time model is [I] + �[Q], where [I] is the 
identity matrix. We denote this matrix by [W�] = [I]+ �[Q]. Note that � is an eigenvalue of 
[Q] if and only if 1+�� is an eigenvalue of [W�]. Also the eigenvectors of these corresponding 
eigenvalues are the same. That is, if ⌫⌫⌫ is a right eigenvector of [Q] with eigenvalue �, then 
⌫⌫⌫ is a right eigenvector of [W�] with eigenvalue 1 + ��, and conversely. Similarly, if p is a 
left eigenvector of [Q] with eigenvalue �, then p is a left eigenvectorof [W�] with eigenvalue 
1 + ��, and conversely. 

We saw in Section 6.2.5 that the steady-state probability vector p of a Markov process is the 
same as that of any sampled-time approximation. We have now seen that, in addition, all 
the eigenvectors are the same and the eigenvalues are simply related. Thus study of these 
di↵erential equations can be largely replaced by studying the sampled-time approximation. 

The following theorem uses our knowledge of the eigenvalues and eigenvectors of transition 
matrices such as [W�] in Section 3.4, to be more specific about the properties of [Q]. 

Theorem 6.3.1. Consider an irreducible finite-state Markov process with M states. Then 
the matrix [Q] for that process has an eigenvalue � equal to 0. That eigenvalue has a right 
eigenvector e = (1, 1, . . . , 1)T which is unique within a scale factor. It has a left eigenvector 
p = (p1, . . . , pM) that is positive, sums to 1, satisfies (6.23), and is unique within a scale 
factor. All the other eigenvalues of [Q] have strictly negative real parts. 

Proof: Since all M states communicate, the sampled time chain is recurrent. From Theorem 
3.4.1, [W�] has a unique eigenvalue � = 1. The corresponding right eigenvector is e and 
the left eigenvector is the steady-state probability vector p as given in (3.9). Since [W�] 
is recurrent, the components of p are strictly positive. From the equivalence of (6.23) 
and (6.24), p, as given by (6.23), is the steady-state probability vector of the process. 
Each eigenvalue �� of [W�] corresponds to an eigenvalue � of [Q] with the correspondence 
�� = 1+��, i.e., � = (�� �1)/�. Thus the eigenvalue 1 of [W�] corresponds to the eigenvalue 
0 of [Q]. Since |��|  1 and �� = 1 for all other eigenvalues, the other eigenvalues of [6 Q] all 
have strictly negative real parts, completing the proof. 

We complete this section by deriving the Komogorov backward equations. For s small and 
positive, the Chapman-Kolmogorov equations in (6.27) become 

X
=

k=i6

Subtracting Pij (t � s) from both sides and dividing by s, 

Pij (t) Pik(s)Pkj (t � s) 
k X

= sqikPkj (t � s) + (1 � s⌫i)Pij (t � s) + o(s) 

Pij (t) � Pij(t � s) 
s


X
= qikPkj (t � s) � ⌫iPij (t � s) + 

o(s) 
s


k=i6

dPij (t) 
dt


X
= qikPkj (t) � ⌫iPij(t) (6.32) 

k=i6
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In matrix form, this is expressed as 

d[P (t)] 
= [Q][P (t)] (6.33)

dt 

By comparing (6.33 and (6.31), we see that [Q][P (t)] = [P (t)][Q], i.e., that the matrices 
[Q] and [P (t)] commute. Simultaneous linear di↵erential equations appear in so many 
applications that we leave the further exploration of these forward and backward equations 
as simple di↵erential equation topics rather than topics that have special properties for 
Markov processes. 

6.4 Uniformization 

Up until now, we have discussed Markov processes under the assumption that qii = 0 (i.e., 
no transitions from a state into itself are allowed). We now consider what happens if this 
restriction is removed. Suppose we start with some Markov process defined by a set of 
transition rates qij with qii = 0, and we modify this process by some arbitrary choice of 
qii � 0 for each state i. This modification changes the embedded Markov chain, since ⌫i is 
increased from 

P
k qik to 

P
k qik + qii. From (6.5), Pij is changed to qij/⌫i for the new =i =i6 6

value of ⌫i for each i, j. Thus the steady-state probabilities ⇡i for the embedded chain are 
changed. The Markov process {X(t); t � 0} is not changed, since a transition from i into 
itself does not change X(t) and does not change the distribution of the time until the next 
transition to a di↵erent state. The steady-state probabilities for the process still satisfy 

pj ⌫j = 
X 

pkqkj ; 
X 

pi = 1. (6.34) 
k i 

The addition of the new term qjj increases ⌫j by qjj , thus increasing the left hand side by 
pj qjj . The right hand side is similarly increased by pj qjj , so that the solution is unchanged 
(as we already determined it must be). 

A particularly convenient way to add self-transitions is to add them in such a way as to 
make the transition rate ⌫j the same for all states. Assuming that the transition rates 
{⌫i; i � 0} are bounded, we define ⌫⇤ as supj ⌫j for the original transition rates. Then we 
set qjj = ⌫⇤ �

P
k=j qjk for each j. With this addition of self-transitions, all transition rates 6

become ⌫⇤. From (6.21), we see that the new steady state probabilities, ⇡i
⇤, in the embedded 

Markov chain become equal to the steady-state process probabilities, pi. Naturally, we could 
also choose any ⌫ greater than ⌫⇤ and increase each qjj to make all transition rates equal to 
that value of ⌫. When the transition rates are changed in this way, the resulting embedded 
chain is called a uniformized chain and the Markov process is called the uniformized process. 
The uniformized process is the same as the original process, except that quantities like the 
number of transitions over some interval are di↵erent because of the self transitions. 

Assuming that all transition rates are made equal to ⌫⇤, the new transition probabilities in 
the embedded chain become Pij

⇤ = qij/⌫⇤. Let N(t) be the total number of transitions that 
occur from 0 to t in the uniformized process. Since the rate of transitions is the same from 
all states and the inter-transition intervals are independent and identically exponentially 
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distributed, N(t) is a Poisson counting process of rate ⌫⇤. Also, N(t) is independent of 
the sequence of transitions in the embedded uniformized Markov chain. Thus, given that 
N(t) = n, the probability that X(t) = j given that X(0) = i is just the probability that 

nthe embedded chain goes from i to j in ⌫ steps, i.e., Pij
⇤ . This gives us another formula for 

calculating Pij (t), (i.e., the probability that X(t) = j given that X(0) = i). 

1
e�⌫⇤t(⌫⇤t)n 

Pij (t) = 
X 

Pij
⇤n . (6.35) 

n! 
n=0 

Another situation where the uniformized process is useful is in extending Markov decision 
theory to Markov processes, but we do not pursue this. 

6.5 Birth-death processes 

Birth-death processes are very similar to the birth-death Markov chains that we studied 
earlier. Here transitions occur only between neighboring states, so it is convenient to define 
�i as qi,i+1 and µi as qi,i�1 (see Figure 6.9). Since the number of transitions from i to i + 1 
is within 1 of the number of transitions from i + 1 to i for every sample path, we conclude 
that 

pi�i = pi+1µi+1. (6.36) 

This can also be obtained inductively from (6.23) using the same argument that we used 
earlier for birth-death Markov chains. 

�0 �1 �2 �3 
z z z zn X n X 4n . . . 0 X
X 1nX X 2nX 3 Xy y y y 

µ1 µ2 µ3 µ4 

Figure 6.9: Birth-death process. 

Define ⇢i as �i/µi+1. Then applying (6.36) iteratively, we obtain the steady-state equations 

i�1

pi = p0 

Y 
⇢j ; i � 1. (6.37) 

j=0 

We can solve for p0 by substituting (6.37) into 
P

i pi, yielding 

1 
p0 = . (6.38)

1 + 
P1 Qi�1 

i=1 j=0 ⇢j 

For the M/M/1 queue, the state of the Markov process is the number of customers in 
the system (i.e., customers either in queue or in service). The transitions from i to i + 1 
correspond to arrivals, and since the arrival process is Poisson of rate �, we have �i = � for 
all i � 0. The transitions from i to i � 1 correspond to departures, and since the service 
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time distribution is exponential with parameter µ, say, we have µi = µ for all i � 1. Thus, 
(6.38) simplifies to p0 = 1 � ⇢, where ⇢ = �/µ and thus 

pi = (1 � ⇢)⇢ i; i � 0. (6.39) 

We assume that ⇢ < 1, which is required for positive recurrence. The probability that there 
are i or more customers in the system in steady state is then given by P {X(t) � i} = ⇢i 

and the expected number of customers in the system is given by 

1
⇢ 

E [X(t)] = 
X 

P {X(t) � i} =
1 � ⇢

. (6.40) 
i=1 

The expected time that a customer spends in the system in steady state can now be deter­
mined by Little’s formula (Theorem 4.5.3). 

E [System time] = 
E [X(t)] 

= 
⇢ 

=
1 

. (6.41)
� �(1 � ⇢) µ � � 

The expected time that a customer spends in the queue (i.e., before entering service) is just 
the expected system time less the expected service time, so 

1 1 ⇢ 
E [Queueing time] = 

µ � � 
� = 

µ � �
. (6.42) 

µ 

Finally, the expected number of customers in the queue can be found by applying Little’s 
formula to (6.42), 

�⇢ 
E [Number in queue] = . (6.43) 

Note that the expected number of customers in the system and in the queue depend only on 
⇢, so that if the arrival rate and service rate were both speeded up by the same factor, these 
expected values would remain the same. The expected system time and queueing time, 
however would decrease by the factor of the rate increases. Note also that as ⇢ approaches 
1, all these quantities approach infinity as 1/(1 � ⇢). At the value ⇢ = 1, the embedded 
Markov chain becomes null-recurrent and the steady-state probabilities (both {⇡i; i � 0}
and {pi; i � 0}) can be viewed as being all 0 or as failing to exist. 

There are many types of queueing systems that can be modeled as birth-death processes. 
For example the arrival rate could vary with the number in the system and the service rate 
could vary with the number in the system. All of these systems can be analyzed in steady 
state in the same way, but (6.37) and (6.38) can become quite messy in these more complex 
systems. As an example, we analyze the M/M/m system. Here there are m servers, each 
with exponentially distributed service times with parameter µ. When i customers are in 
the system, there are i servers working for i < m and all m servers are working for i � m. 
With i servers working, the probability of a departure in an incremental time � is iµ�, so 
that µi is iµ for i < m and mµ for i � m (see Figure 6.10). 
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Define ⇢ = �/(mµ). Then in terms of our general birth-death process notation, ⇢i = 
m⇢/(i + 1) for i < m and ⇢i = ⇢ for i � m. From (6.37), we have 

m⇢ m⇢ m⇢ p0(m⇢)i 

pi = p0 1 2 
· · · 

i 
= 

i!
; i  m (6.44) 

i m 

pi = 
p0⇢ m

; i � m. (6.45) 
m! 

z z z Xn X n z 4n . . . 0 X
X 1nX X 2nX 3 Xy y y y 

µ 2µ 3µ 3µ 

Figure 6.10: M/M/m queue for m = 3.. 

We can find p0 by summing pi and setting the result equal to 1; a solution exists if ⇢ < 1. 
Nothing simplifies much in this sum, except that 

P
i�m pi = p0(⇢m)m/[m!(1 � ⇢)], and the 

solution is 
" 

(m⇢)m m�1 (m⇢)i 
#�1 

p0 = + . (6.46) 
m!(1 � ⇢) 

X 
i! 

i=0 

6.6 Reversibility for Markov processes 

In Section 5.3 on reversibility for Markov chains, (5.37) showed that the backward transition 
probabilities Pij

⇤ in steady state satisfy 

⇡iPij
⇤ = ⇡j Pji. (6.47) 

These equations are then valid for the embedded chain of a Markov process. Next, consider 
backward transitions in the process itself. Given that the process is in state i, the probability 
of a transition in an increment � of time is ⌫i�+o(�), and transitions in successive increments 
are independent. Thus, if we view the process running backward in time, the probability 
of a transition in each increment � of time is also ⌫i� + o(�) with independence between 
increments. Thus, going to the limit � ! 0, the distribution of the time backward to a 
transition is exponential with parameter ⌫i. This means that the process running backwards 
is again a Markov process with transition probabilities Pij

⇤ and transition rates ⌫i. Figure 
6.11 helps to illustrate this. 

Since the steady-state probabilities {pi; i � 0} for the Markov process are determined by 

pi = 
⇡i/⌫i , (6.48)P
k ⇡k/⌫k 



283 6.6. REVERSIBILITY FOR MARKOV PROCESSES 

� State i -� State j, rate ⌫j -� State k -

t1 t2 

Figure 6.11: The forward process enters state j at time t1 and departs at t2. The 
backward process enters state j at time t2 and departs at t1. In any sample function, as 
illustrated, the interval in a given state is the same in the forward and backward process. 
Given X(t) = j, the time forward to the next transition and the time backward to the 
previous transition are each exponential with rate ⌫j . 

and since {⇡i; i � 0} and {⌫i; i � 0} are the same for the forward and backward processes, 
we see that the steady-state probabilities in the backward Markov process are the same as 
the steady-state probabilities in the forward process. This result can also be seen by the 
correspondence between sample functions in the forward and backward processes. 

The transition rates in the backward process are defined by qij
⇤ = ⌫iPij

⇤ . Using (6.47), we 
have 

qij
⇤ = ⌫j Pij

⇤ = 
⌫i⇡j Pji = 

⌫i⇡j qji . (6.49) 
⇡i ⇡i⌫j 

From (6.48), we note that pj = ↵⇡j /⌫j and pi = ↵⇡i/⌫i for the same value of ↵. Thus the 
ratio of ⇡j /⌫j to ⇡i/⌫i is pj /pi. This simplifies (6.49) to qij

⇤ = pj qji/pi, and 

piqij
⇤ = pj qji. (6.50) 

This equation can be used as an alternate definition of the backward transition rates. To 
interpret this, let � be a vanishingly small increment of time and assume the process is in 
steady state at time t. Then �pj qji ⇡ Pr{X(t) = j} Pr{X(t + �) = i X(t) = j} whereas 
�piqij

⇤ ⇡ Pr{X(t + �) = i} Pr{X(t) = j | X(t + �) = i}. 
| 

A Markov process is defined to be reversible if qij
⇤ = qij for all i, j. If the embedded Markov 

chain is reversible, (i.e., Pij
⇤ = Pij for all i, j), then one can repeat the above steps using Pij 

and qij in place of Pij
⇤ and qij

⇤ to see that piqij = pj qji for all i, j. Thus, if the embedded 
chain is reversible, the process is also. Similarly, if the Markov process is reversible, the 
above argument can be reversed to see that the embedded chain is reversible. Thus, we 
have the following useful lemma. 

Lemma 6.6.1. Assume that steady-state probabilities {pi; i�0} exist in an irreducible Markov 
process (i.e., (6.23) has a solution and 

P
pi⌫i < 1). Then the Markov process is reversible 

if and only if the embedded chain is reversible. 

One can find the steady-state probabilities of a reversible Markov process and simultane­
ously show that it is reversible by the following useful theorem (which is directly analogous 
to Theorem 5.3.2 of chapter 5). 
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Theorem 6.6.1. For an irreducible Markov process, assume that {pi; i � 0} is a set of 
nonnegative numbers summing to 1, satisfying 

P
i pi⌫i  1, and satisfying 

piqij = pj qji for all i, j. (6.51) 

Then {pi; i � 0} is the set of steady-state probabilities for the process, pi > 0 for all i, the 
process is reversible, and the embedded chain is positive recurrent. 

Proof: Summing (6.51) over i, we obtain 
X

piqij = pj ⌫j for all j. 
i 

These, along with 
P

i pi = 1 are the steady-state equations for the process. These equations 
have a solution, and by Theorem 6.2.2, pi > 0 for all i, the embedded chain is positive 
recurrent, and pi = limt!1 Pr{X(t) = i}. Comparing (6.51) with (6.50), we see that 
qij = qij

⇤ , so the process is reversible. 

There are many irreducible Markov processes that are not reversible but for which the 
backward process has interesting properties that can be deduced, at least intuitively, from 
the forward process. Jackson networks (to be studied shortly) and many more complex 
networks of queues fall into this category. The following simple theorem allows us to use 
whatever combination of intuitive reasoning and wishful thinking we desire to guess both 
the transition rates qij

⇤ in the backward process and the steady-state probabilities, and to 
then verify rigorously that the guess is correct. One might think that guessing is somehow 
unscientific, but in fact, the art of educated guessing and intuitive reasoning leads to much 
of the best research. 

Theorem 6.6.2. For an irreducible Markov process, assume that a set of positive numbers 
{pi; i � 0} satisfy 

P
i pi = 1 and 

P
i pi⌫i < 1. Also assume that a set of nonnegative 

numbers {qij
⇤ } satisfy the two sets of equations 

X
qij = 

X
qij
⇤ for all i (6.52) 

j j 

= pj q
⇤ for all i, j. (6.53)piqij ji 

Then {pi} is the set of steady-state probabilities for the process, pi > 0 for all i, the embedded 
chain is positive recurrent, and {qij

⇤ } is the set of transition rates in the backward process. 

Proof: Sum (6.53) over i. Using the fact that 
P

j qij = ⌫i and using (6.52), we obtain 

X
piqij = pj ⌫j for allj. (6.54) 

i 

These, along with 
P

i pi = 1, are the steady-state equations for the process. These equations 
thus have a solution, and by Theorem 6.2.2, pi > 0 for all i, the embedded chain is positive 
recurrent, and pi = limt!1 Pr{X(t) = i}. Finally, q⇤ as given by (6.53) is the backward ij
transition rate as given by (6.50) for all i, j. 
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We see that Theorem 6.6.1 is just a special case of Theorem 6.6.2 in which the guess about 
qij
⇤ is that qij

⇤ = qij . 

Birth-death processes are all reversible if the steady-state probabilities exist. To see this, 
note that Equation (6.36) (the equation to find the steady-state probabilities) is just (6.51) 
applied to the special case of birth-death processes. Due to the importance of this, we state 
it as a theorem. 

Theorem 6.6.3. For a birth-death process, if there is a solution {pi; i � 0} to (6.36) with P
i pi = 1 and 

P
i pi⌫i < 1, then the process is reversible, and the embedded chain is 

positive recurrent and reversible. 

Since the M/M/1 queueing process is a birth-death process, it is also reversible. Burke’s 
theorem, which was given as Theorem 5.4.1 for sampled-time M/M/1 queues, can now be 
established for continuous-time M/M/1 queues. Note that the theorem here contains an 
extra part, part c). 

Theorem 6.6.4 (Burke’s theorem). Given an M/M/1 queueing system in steady state 
with � < µ, 

a) the departure process is Poisson with rate �, 

b) the state X(t) at any time t is independent of departures prior to t, and 

c) for FCFS service, given that a customer departs at time t, the arrival time of that 
customer is independent of the departures prior to t. 

Proof: The proofs of parts a) and b) are the same as the proof of Burke’s theorem for 
sampled-time, Theorem 5.4.1, and thus will not be repeated. For part c), note that with 
FCFS service, the mth customer to arrive at the system is also the mth customer to depart. 
Figure 6.12 illustrates that the association between arrivals and departures is the same 
in the backward system as in the forward system (even though the customer ordering is 
reversed in the backward system). In the forward, right moving system, let ⌧ be the epoch 
of some given arrival. The customers arriving after ⌧ wait behind the given arrival in the 
queue, and have no e↵ect on the given customer’s service. Thus the interval from ⌧ to the 
given customer’s service completion is independent of arrivals after ⌧ . 

Since the backward, left moving, system is also an M/M/1 queue, the interval from a 
given backward arrival, say at epoch t, moving left until the corresponding departure, is 
independent of arrivals to the left of t. From the correspondence between sample functions 
in the right moving and left moving systems, given a departure at epoch t in the right 
moving system, the departures before time t are independent of the arrival epoch of the 
given customer departing at t; this completes the proof. 

Part c) of Burke’s theorem does not apply to sampled-time M/M/1 queues because the 
sampled time model does not allow for both an arrival and departure in the same increment 
of time. 

Note that the proof of Burke’s theorem (including parts a and b from Section 5.4) does not 
make use of the fact that the transition rate qi,i�1 = µ for i � 1 in the M/M/1 queue. Thus 
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Figure 6.12: FCFS arrivals and departures in right and left moving M/M/1 processes. 

Burke’s theorem remains true for any birth-death Markov process in steady state for which 
qi,i+1 = � for all i � 0. For example, parts a and b are valid for M/M/m queues; part c is 
also valid (see [22]), but the argument here is not adequate since the first customer to enter 
the system might not be the first to depart. 

We next show how Burke’s theorem can be used to analyze a tandem set of queues. As 
shown in Figure 6.13, we have an M/M/1 queueing system with Poisson arrivals at rate � 
and service at rate µ1. The departures from this queueing system are the arrivals to a second 
queueing system, and we assume that a departure from queue 1 at time t instantaneously 
enters queueing system 2 at the same time t. The second queueing system has a single server 
and the service times are IID and exponentially distributed with rate µ2. The successive 
service times at system 2 are also independent of the arrivals to systems 1 and 2, and 
independent of the service times in system 1. Since we have already seen that the departures 
from the first system are Poisson with rate �, the arrivals to the second queue are Poisson 
with rate �. Thus the second system is also M/M/1. 

M/M/1 M/M/1 

� - � -� -

µ1 µ2 

Figure 6.13: A tandem queueing system. Assuming that � > µ1 and � > µ2, the 
departures from each queue are Poisson of rate �. 

Let X(t) be the state of queueing system 1 and Y (t) be the state of queueing system 2. 
Since X(t) at time t is independent of the departures from system 1 prior to t, X(t) is 
independent of the arrivals to system 2 prior to time t. Since Y (t) depends only on the 
arrivals to system 2 prior to t and on the service times that have been completed prior to 
t, we see that X(t) is independent of Y (t). This leaves a slight nit-picking question about 
what happens at the instant of a departure from system 1. We have considered the state 
X(t) at the instant of a departure to be the number of customers remaining in system 1 
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not counting the departing customer. Also the state Y (t) is the state in system 2 including 
the new arrival at instant t. The state X(t) then is independent of the departures up to 
and including t, so that X(t) and Y (t) are still independent. 

Next assume that both systems use FCFS service. Consider a customer that leaves system 
1 at time t. The time at which that customer arrived at system 1, and thus the waiting 
time in system 1 for that customer, is independent of the departures prior to t. This 
means that the state of system 2 immediately before the given customer arrives at time t is 
independent of the time the customer spent in system 1. It therefore follows that the time 
that the customer spends in system 2 is independent of the time spent in system 1. Thus 
the total system time that a customer spends in both system 1 and system 2 is the sum of 
two independent random variables. 

This same argument can be applied to more than 2 queueing systems in tandem. It can also 
be applied to more general networks of queues, each with single servers with exponentially 
distributed service times. The restriction here is that there can not be any cycle of queueing 
systems where departures from each queue in the cycle can enter the next queue in the cycle. 
The problem posed by such cycles can be seen easily in the following example of a single 
queueing system with feedback (see Figure 6.14). 

M/M/1 

�Q 

1�Q 

-� -

µ 

6 

Figure 6.14: A queue with feedback. Assuming that µ > �/Q, the exogenous output 
is Poisson of rate �. 

We assume that the queueing system in Figure 6.14 has a single server with IID exponen­
tially distributed service times that are independent of arrival times. The exogenous arrivals 
from outside the system are Poisson with rate �. With probability Q, the departures from 
the queue leave the entire system, and, alternatively, with probability 1 � Q, they return 
instantaneously to the input of the queue. Successive choices between leaving the system 
and returning to the input are IID and independent of exogenous arrivals and of service 
times. Figure 6.15 shows a sample function of the arrivals and departures in the case in 
which the service rate µ is very much greater than the exogenous arrival rate �. Each 
exogenous arrival spawns a geometrically distributed set of departures and simultaneous 
re-entries. Thus the overall arrival process to the queue, counting both exogenous arrivals 
and feedback from the output, is not Poisson. Note, however, that if we look at the Markov 
process description, the departures that are fed back to the input correspond to self loops 
from one state to itself. Thus the Markov process is the same as one without the self loops 
with a service rate equal to µQ. Thus, from Burke’s theorem, the exogenous departures are 
Poisson with rate �. Also the steady-state distribution of X(t) is P {X(t) = i} = (1 � ⇢)⇢i 

where ⇢ = �/(µQ) (assuming, of course, that ⇢ < 1). 
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Figure 6.15: Sample path of arrivals and departures for queue with feedback. 

The tandem queueing system of Figure 6.13 can also be regarded as a combined Markov 
process in which the state at time t is the pair (X(t), Y (t)). The transitions in this 
process correspond to, first, exogenous arrivals in which X(t) increases, second, exogenous 
departures in which Y (t) decreases, and third, transfers from system 1 to system 2 in which 
X(t) decreases and Y (t) simultaneously increases. The combined process is not reversible 
since there is no transition in which X(t) increases and Y (t) simultaneously decreases. In 
the next section, we show how to analyze these combined Markov processes for more general 
networks of queues. 

6.7 Jackson networks 

In many queueing situations, a customer has to wait in a number of di↵erent queues before 
completing the desired transaction and leaving the system. For example, when we go to 
the registry of motor vehicles to get a driver’s license, we must wait in one queue to have 
the application processed, in another queue to pay for the license, and in yet a third queue 
to obtain a photograph for the license. In a multiprocessor computer facility, a job can be 
queued waiting for service at one processor, then go to wait for another processor, and so 
forth; frequently the same processor is visited several times before the job is completed. In 
a data network, packets traverse multiple intermediate nodes; at each node they enter a 
queue waiting for transmission to other nodes. 

Such systems are modeled by a network of queues, and Jackson networks are perhaps the 
simplest models of such networks. In such a model, we have a network of k interconnected 
queueing systems which we call nodes. Each of the k nodes receives customers (i.e., tasks 
or jobs) both from outside the network (exogenous inputs) and from other nodes within the 
network (endogenous inputs). It is assumed that the exogenous inputs to each node i form 
a Poisson process of rate ri and that these Poisson processes are independent of each other. 
For analytical convenience, we regard this as a single Poisson input process of rate �0, with 
each input independently going to each node i with probability Q0i = ri/�0. 

Each node i contains a single server, and the successive service times at node i are IID 
random variables with an exponentially distributed service time of rate µi. The service times 
at each node are also independent of the service times at all other nodes and independent 
of the exogenous arrival times at all nodes. When a customer completes service at a given 
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Figure 6.16: A Jackson network with 3 nodes. Given a departure from node i, the 
probability that departure goes to node j (or, for j = 0, departs the system) is Qij . 
Note that a departure from node i can re-enter node i with probability Qii. The overall 
exogenous arrival rate is �0, and, conditional on an arrival, the probability the arrival 
enters node i is Q0i. 

node i, that customer is routed to node j with probability Qij (see Figure 6.16). It is 
also possible for the customer to depart from the network entirely (called an exogenous 
departure), and this occurs with probability Qi0 = 1�

P
j�1 Qij . For a customer departing 

from node i, the next node j is a random variable with PMF {Qij , 0  j  k}. 

Successive choices of the next node for customers at node i are IID, independent of the 
customer routing at other nodes, independent of all service times, and independent of the 
exogenous inputs. Notationally, we are regarding the outside world as a fictitious node 0 
from which customers appear and to which they disappear. 

When a customer is routed from node i to node j, it is assumed that the routing is instan­
taneous; thus at the epoch of a departure from node i, there is a simultaneous endogenous 
arrival at node j. Thus a node j receives Poisson exogenous arrivals from outside the system 
at rate �0Q0j and receives endogenous arrivals from other nodes according to the proba­
bilistic rules just described. We can visualize these combined exogenous and endogenous 
arrivals as being served in FCFS fashion, but it really makes no di↵erence in which order 
they are served, since the customers are statistically identical and simply give rise to service 
at node j at rate µj whenever there are customers to be served. 

The Jackson queueing network, as just defined, is fully described by the exogenous input rate 
�0, the service rates {µi}, and the routing probabilities {Qij ; 0  i, j  k}. The network 
as a whole is a Markov process in which the state is a vector m = (m1,m2, . . . ,mk), where 
mi, 1  i  k, is the number of customers at node i. State changes occur upon exogenous 
arrivals to the various nodes, exogenous departures from the various nodes, and departures 
from one node that enter another node. In a vanishingly small interval � of time, given that 
the state at the beginning of that interval is m , an exogenous arrival at node j occurs in 
the interval with probability �0Q0j � and changes the state to m 0 = m + ej where ej is a 
unit vector with a one in position j. If mi > 0, an exogenous departure from node i occurs 
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in the interval with probability µiQi0� and changes the state to m 0 = m � e i. Finally, if 
mi > 0, a departure from node i entering node j occurs in the interval with probability 
µiQij� and changes the state to m 0 = m � e i + ej . Thus, the transition rates are given by 

qm ,m 0	 = �0Q0j for m 0 = m + ej , 1  i  k (6.55) 
= µiQi0 for m 0 = m � m i, mi > 0, 1  i  k (6.56) 
= µiQij for m 0 = m � e i + ej , mi > 0, 1  i, j  k (6.57) 
= 0 for all other choices of m 0. 

Note that a departure from node i that re-enters node i causes a transition from state m 
back into state m ; we disallowed such transitions in sections 6.1 and 6.2, but showed that 
they caused no problems in our discussion of uniformization. It is convenient to allow these 
self-transitions here, partly for the added generality and partly to illustrate that the single 
node network with feedback of Figure 6.14 is an example of a Jackson network. 

Our objective is to find the steady-state probabilities p(m) for this type of process, and our 
plan of attack is in accordance with Theorem 6.6.2; that is, we shall guess a set of transition 
rates for the backward Markov process, use these to guess p(m), and then verify that the 
guesses are correct. Before making these guesses, however, we must find out a little more 
about how the system works, so as to guide the guesswork. Let us define �i for each i, 
1  i  k, as the time-average overall rate of arrivals to node i, including both exogenous 
and endogenous arrivals. Since �0 is the rate of exogenous inputs, we can interpret �i/�0 

as the expected number of visits to node i per exogenous input. The endogenous arrivals to 
node i are not necessarily Poisson, as the example of a single queue with feedback shows, 
and we are not even sure at this point that such a time-average rate exists in any reasonable 
sense. However, let us assume for the time being that such rates exist and that the time-
average rate of departures from each node equals the time-average rate of arrivals (i.e., the 
queue sizes do not grow linearly with time). Then these rates must satisfy the equation 

k

�j = 
X 

�iQij ; 1  j  k. (6.58) 
j=0 

To see this, note that �0Q0j is the rate of exogenous arrivals to j. Also �i is the time-average 
rate at which customers depart from queue i, and �iQij is the rate at which customers go 
from node i to node j. Thus, the right hand side of (6.58) is the sum of the exogenous and 
endogenous arrival rates to node j. Note the distinction between the time-average rate of 
customers going from i to j in (6.58) and the rate qm ,m 0 = µiQij for m 0 = m�e i+ej ,mi > 0 
in (6.57). The rate in (6.57) is conditioned on a state m with mi > 0, whereas that in (6.58) 
is the overall time-average rate, averaged over all states. 

Note that {Qij ; 0  i, j  k} forms a stochastic matrix and (6.58) is formally equivalent 
to the equations for steady-state probabilities (except that steady-state probabilities sum 
to 1). The usual equations for steady-state probabilities include an equation for j = 0, but 
that equation is redundant. Thus we know that, if there is a path between each pair of 
nodes (including the fictitious node 0), then (6.58) has a solution for {�i; 0  i  k, and 
that solution is unique within a scale factor. The known value of �0 determines this scale 
factor and makes the solution unique. Note that we don’t have to be careful at this point 
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about whether these rates are time-averages in any nice sense, since this will be verified 
later; we do have to make sure that (6.58) has a solution, however, since it will appear in 
our solution for p(m). Thus we assume in what follows that a path exists between each 
pair of nodes, and thus that (6.58) has a unique solution as a function of �0. 

We now make the final necessary assumption about the network, which is that µi > �i 

for each node i. This will turn out to be required in order to make the process positive 
recurrent. We also define ⇢i as �i/µi. We shall find that, even though the inputs to an 
individual node i are not Poisson in general, there is a steady-state distribution for the 
number of customers at i, and that distribution is the same as that of an M/M/1 queue 
with the parameter ⇢i. 

Now consider the backward time process. We have seen that only three kinds of transitions 
are possible in the forward process. First, there are transitions from m to m 0 = m + ej 

for any j, 1  j  k. Second, there are transitions from m to m � e i for any i, 1 � i  k, 
such that mi > 0. Third, there are transitions from m to m 0 = m � e i + ej for 1  i, j  k 
with mi > 0. Thus in the backward process, transitions from m 0 to m are possible only 
for the m , m 0 pairs above. Corresponding to each arrival in the forward process, there is a 
departure in the backward process; for each forward departure, there is a backward arrival; 
and for each forward passage from i to j, there is a backward passage from j to i. 

We now make the conjecture that the backward process is itself a Jackson network with 
Poisson exogenous arrivals at rates {�0Q⇤0j}, service times that are exponential with rates 
{µi}, and routing probabilities {Qij

⇤ }. The backward routing probabilities {Q⇤ij} must 
be chosen to be consistent with the transition rates in the forward process. Since each 
transition from i to j in the forward process must correspond to a transition from j to i in 
the backward process, we should have 

�iQij = �j Qji 
⇤ ; 0  i, j  k. (6.59) 

Note that �iQij represents the rate at which forward transitions go from i to j, and �i rep­
resents the rate at which forward transitions leave node i. Equation (6.59) takes advantage 
of the fact that �i is also the rate at which forward transitions enter node i, and thus the 
rate at which backward transitions leave node i. Using the conjecture that the backward 
time system is a Jackson network with routing probabilities {Q⇤ ; 0  i, j  k}, we can ij
write down the backward transition rates in the same way as (6.55-6.57), 

q⇤ = �0Q
⇤
0j for m 0 = m + ej (6.60)m ,m 0 

= µiQi
⇤
0 for m 0 = m � e i,mi > 0, 1  i  k (6.61) 

= µiQ
⇤ for m 0 m � i > 0, 1  i, j  k. (6.62)ij = m � e i + ej , 

If we substitute (6.59) into (6.60)-(6.62), we obtain 

q⇤ = �j Qj0 for m 0 = m + ej , (6.63)m ,m 0 1  j  k 

= (µi/�i)�0Q0i for m 0 = m � e i,mi > 0, 1  i  k (6.64) 
= (µi/�i)�j Qji for m 0 = m � e i + ej , mi > 0, 1  i, j  k. (6.65) 

This gives us our hypothesized backward transition rates in terms of the parameters of the 
original Jackson network. To use theorem 6.6.2, we must verify that there is a set of positive 



292 CHAPTER 6. MARKOV PROCESSES WITH COUNTABLE STATE SPACES 

numbers, p(m), satisfying 
P

m p(m) = 1 and 
P

m ⌫m pm < 1, and a set of nonnegative 
numbers q⇤ satisfying the following two sets of equations: m 0,m 

p(m)qm ,m 0 = p(m 0)q⇤ for all m , m 0 (6.66)m 0,m X

qm ,m 0 =


X

q⇤m ,m 0 for all m . (6.67) 

m m 0 

We verify (6.66) by substituting (6.55)-(6.57) on the left side of (6.66) and (6.63)-(6.65) on 
the right side. Recalling that ⇢i is defined as �i/µi, and cancelling out common terms on 
each side, we have 

p(m) = p(m 0)/⇢j for m 0 = m + ej (6.68) 
p(m) = p(m 0)⇢i for m 0 = m � e i,mi > 0 (6.69) 
p(m) = p(m 0)⇢i/⇢j for m 0 = m � e i + ej , mi > 0. (6.70) 

Y 

Looking at the case m 0 = m � e i, and using this equation repeatedly to get from state 
(0, 0, . . . , 0) up to an arbitrary m, we obtain 

k

p(m) = p(0, 0, . . . , 0) mi⇢i . (6.71) 
i=1 

It is easy to verify that (6.71) satisfies (6.68)-(6.70) for all possible transitions. Summing 
over all m to solve for p(0, 0, . . . , 0), we get X
 X
 X
 X


1 =
 p(m) = p(0, 0, . . . , 0) mkm1 m2 

YY 

⇢ ⇢ 
m1,m2,... ,mk m1 m2 mk 

= p(0, 0 . . . , 0)(1 � ⇢1)�1(1 � ⇢2)�1 . . . (1 � ⇢k)�1 . 

Thus, p(0, 0, . . . , 0) = (1 � ⇢1)(1 � ⇢2) . . . (1 � ⇢k), and substituting this in (6.71), we get 

k k

⇢
 . . .
1 2 k 

mi

h
(1 � ⇢i)⇢ 

i
.ip(m) = pi(mi) = (6.72)


XX 

i=1 i=1 

mwhere pi(m) = (1 � ⇢i)⇢ is the steady-state distribution of a single M/M/1 queue. Now i 
that we have found the steady-state distribution implied by our assumption about the 
backward process being a Jackson network, our remaining task is to verify (6.67) 

To verify (6.67), i.e., 
P

m 0 qm ,m 0 = 
P

m 0 q⇤ , first consider the right side. Using (6.60) to m ,m 0

sum over all m 0 = m + ej , then (6.61) to sum over m 0 = m � e i (for i such that mi > 0), 
and finally (6.62) to sum over m 0 = m � e i + ej , (again for i such that mi > 0), we get 

k kX
 X
 X

(6.73)
�0Q

⇤
0j + µiQ

⇤
i0 + Q⇤ij .q⇤ = m ,m 0 µi 

m 0 j=1 i:mj >0 i:mi>0 j=1 

Using the fact Q⇤ is a stochastic matrix, then, X

q⇤ = �0 +m ,m 0

X

µi. (6.74)


m 0 i:mi>0 
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The left hand side of (6.67) can be summed in the same way to get the result on the right 
side of (6.74), but we can see that this must be the result by simply observing that �0 is 
the rate of exogenous arrivals and 

P
i:mi>0 µi is the overall rate of service completions in 

state m . Note that this also verifies that ⌫m = 
P

m 0 qm ,m 0 � �0 + 
P

i µi, and since ⌫m is 
bounded, 

P
m ⌫m p(m) < 1. Since all the conditions of Theorem 6.6.2 are satisfied, p(m), 

as given in (6.72), gives the steady-state probabilities for the Jackson network. This also 
verifies that the backward process is a Jackson network, and hence the exogenous departures 
are Poisson and independent. 

Although the exogenous arrivals and departures in a Jackson network are Poisson, the 
endogenous processes of customers travelling from one node to another are typically not 
Poisson if there are feedback paths in the network. Also, although (6.72) shows that the 

k k miY 

numbers of customers at the di↵erent nodes are independent random variables at any given 
time in steady-state, it is not generally true that the number of customers at one node at 
one time is independent of the number of customers at another node at another time. 

Y 

There are many generalizations of the reversibility arguments used above, and many network 
situations in which the nodes have independent states at a common time. We discuss just 
two of them here and refer to Kelly, [13], for a complete treatment. 

For the first generalization, assume that the service time at each node depends on the 

Y 

number of customers at that node, i.e., µi is replaced by µi,mi . Note that this includes the 
M/M/m type of situation in which each node has several independent exponential servers. 
With this modification, the transition rates in (6.56) and (6.57) are modified by replacing 
µi with µi,mi . The hypothesized backward transition rates are modified in the same way, 
and the only e↵ect of these changes is to replace ⇢i and ⇢j for each i and j in (6.68)-(6.70) 
with ⇢i,mi = �i/µi,mi and ⇢j,mj = �j /µj,mj . With this change, (6.71) becomes 

=p(m) pi(mi) = pi(0) ⇢i,j (6.75) 
i=1 i=1 j=0 

11 �mYX2
4= 

Thus, p(m) is given by the product distribution of k individual birth-death systems. 

6.7.1 Closed Jackson networks 

The second generalization is to a network of queues with a fixed number M of customers 
in the system and with no exogenous inputs or outputs. Such networks are called closed 
Jackson networks, whereas the networks analyzed above are often called open Jackson 
networks. Suppose a k node closed network has routing probabilities Qij , 1  i, j  k, 
where 

P
j Qij = 1, and has exponential service times of rate µi (this can be generalized to 

µi,mi as above). We make the same assumptions as before about independence of service 
variables and routing variables, and assume that there is a path between each pair of nodes. 
Since {Qij ; 1  i, j  k} forms an irreducible stochastic matrix, there is a one dimensional 

3
5


�1 

pi(0) 1 +
 (6.76)
⇢i,j .

m=1 j=0 
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set of solutions to the steady-state equations 

�j = 
X

�iQij ; 1  j  k. (6.77) 
i 

We interpret �i as the time-average rate of transitions that go into node i. Since this set 
of equations can only be solved within an unknown multiplicative constant, and since this 
constant can only be determined at the end of the argument, we define {⇡i; 1  i  k} as 
the particular solution of (6.77) satisfying 

⇡j = 
X

⇡iQij ; 1  j  k; 
X

⇡i = 1. (6.78) 
i i 

Thus, for all i, �i = ↵⇡i, where ↵ is some unknown constant. The state of the Markov 
process is again taken as m = (m1,m2, . . . ,mk) with the condition 

P
i mi = M . The 

transition rates of the Markov process are the same as for open networks, except that there 
are no exogenous arrivals or departures; thus (6.55)-(6.57) are replaced by 

qm ,m 0 = µiQij for m 0 = m � e i + ej , mi > 0, 1  i, j  k. (6.79) 

We hypothesize that the backward time process is also a closed Jackson network, and as 
before, we conclude that if the hypothesis is true, the backward transition rates should be 

qm
⇤

,m 0 = µiQ
⇤ for m 0 mi > 0, 1  i, j  k (6.80)ij = m � e i + ej , 

where �iQij = �j Q
⇤ for 1  i, j  k. (6.81)ji 

In order to use Theorem 6.6.2 again, we must verify that a PMF p(m) exists satisfying 
p(m)qm ,m 0 = p(m 0)q⇤ for all possible states and transitions, and we must also verify 
that 

P
m 0 qm ,m 0 = 

Pm

m

0

0 

,m 
q⇤ for all possible m . This latter verification is virtually the m ,m 0

same as before and is left as an exercise. The former verification, with the use of (72), (73), 
and (74), becomes 

p(m)(µi/�i) = p(m 0)(µj /�j ) for m 0 = m � e i + ej , mi > 0. (6.82) 

Using the open network solution to guide our intuition, we see that the following choice of 
p(m) satisfies (6.82) for all possible m (i.e., all m such that 

P
i mi = M) 

k

p(m) = A 
Y 

(�i/µi)mi ; for m such that 
X 

mi = M. (6.83) 
i=1 i 

The constant A is a normalizing constant, chosen to make p(m) sum to unity. The problem 
with (6.83) is that we do not know �i (except within a multiplicative constant independent 
of i). Fortunately, however, if we substitute ⇡i/↵ for �i, we see that ↵ is raised to the power 
�M , independent of the state m . Thus, letting A0 = A↵ � M , our solution becomes 

K

p(m) = A0 
Y 

(⇡i/µi)mi ; for m such that 
X 

mi = M. (6.84) 
i=1 i 

1 
k

⇡i 

!mi 

= 
X Y 

. (6.85)
A0 

m : 
P

i mi=M 
µii=1 
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Note that the steady-state distribution of the closed Jackson network has been found with­
out solving for the time-average transition rates. Note also that the steady-state distribution 
looks very similar to that for an open network; that is, it is a product distribution over the 
nodes with a geometric type distribution within each node. This is somewhat misleading, 
however, since the constant A0 can be quite di�cult to calculate. It is surprising at first 
that the parameter of the geometric distribution can be changed by a constant multiplier 
in (6.84) and (6.85) (i.e., ⇡i could be replaced with �i) and the solution does not change; 
the important quantity is the relative values of ⇡i/µi from one value of i to another rather 
than the absolute value. 

In order to find �i (and this is important, since it says how quickly the system is doing its 
work), note that �i = µiPr{mi > 0}). Solving for Pr{mi > 0} requires finding the constant 
A0 in (6.79). In fact, the major di↵erence between open and closed networks is that the 
relevant constants for closed networks are tedious to calculate (even by computer) for large 
networks and large M . 

6.8 Semi-Markov processes 

Semi-Markov processes are generalizations of Markov processes in which the time intervals 
between transitions have an arbitrary distribution rather than an exponential distribution. 
To be specific, there is an embedded Markov chain, {Xn; n � 0} with a finite or count­
ably infinite state space, and a sequence {Un; n � 1} of holding intervals between state 
transitions. The epochs at which state transitions occur are then given, for n � 1, as 
Sn = 

P
m
n 

=1 Un. The process starts at time 0 with S0 defined to be 0. The semi-Markov 
process is then the continuous-time process {X(t); t � 0} where, for each n � 0, X(t) = Xn 

for t in the interval Sn  Xn < Sn+1. Initially, X0 = i where i is any given element of the 
state space. 

The holding intervals {Un; n � 1} are nonnegative rv’s that depend only on the current 
state Xn�1 and the next state Xn. More precisely, given Xn�1 = j and Xn = k,say, the 
interval Un is independent of {Um; m < n} and independent of {Xm; m < n � 1} The 
conditional distribution function for such an interval Un is denoted by Gij (u), i.e., 

Pr{Un  u | Xn�1 = j,Xn = k} = Gjk(u). (6.86) 

The dependencies between the rv’s {Xn; n � 0} and {Un; n � 1 is illustrated in Figure 
6.17. 

The conditional mean of Un, conditional on Xn�1 = j, Xn = k, is denoted U(j, k), i.e., 

U(i, j) = E [Un | Xn�1 = i,Xn = j] = 
Z 

u�0 
[1 � Gij(u)]du. (6.87) 

A semi-Markov process evolves in essentially the same way as a Markov process. Given an 
initial state, X0 = i at time 0, a new state X1 = j is selected according to the embedded 
chain with probability Pij . Then U1 = S1 is selected using the distribution Gij(u). Next 
a new state X2 = k is chosen according to the probability Pjk; then, given X1 = j and 
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Figure 6.17: The statistical dependencies between the rv’s of a semi-Markov process. 
Each holding interval Un, conditional on the current state Xn�1 and next state Xn, is 
independent of all other states and holding intervals. Note that, conditional on Xn, the 
holding intervals Un, Un�1, . . . , are statistically independent of Un+1,Xn+2, . . . . 

X2 = k, the interval U2 is selected with distribution function Gjk(u). Successive state 
transitions and transition times are chosen in the same way. 

The steady-state behavior of semi-Markov processes can be analyzed in virtually the same 
way as Markov processes. We outline this in what follows, and often omit proofs where 
they are the same as the corresponding proof for Markov processes. First, since the holding 
intervals, Un, are rv’s, the transition epochs, Sn = 

Pn Un, are also rv’s. The followingm=1 
lemma then follows in the same way as Lemma 6.2.1 for Markov processes. 

Lemma 6.8.1. Let Mi(t) be the number of transitions in a semi-Markov process in the 
interval (0, t] for some given initial state X0 = i. Then limt!1 Mi(t) = 1 WP1. 

In what follows, we assume that the embedded Markov chain is irreducible and positive-
recurrent. We want to find the limiting fraction of time that the process spends in any 
given state, say j. We will find that this limit exists WP1, and will find that it depends 
only on the steady-state probabilities of the embedded Markov chain and on the expected 
holding interval in each state. This is given by 

U(j) = E [Un = j] = 
X

PjkE [Un = j,Xn = k] = 
X

PjkU(j, k), (6.88)| Xn�1 

k 

| Xn�1 

k 

where U(j, k) is given in 6.87. The steady-state probabilities {⇡i; i � 0} for the embedded 
chain tell us the fraction of transitions that enter any given state i. Since U(i) is the 
expected holding interval in i per transition into i, we would guess that the fraction of time 
spent in state i should be proportional to ⇡iU(i). Normalizing, we would guess that the 
time-average probability of being in state i should be 

pj = P⇡

k

j 

⇡

U

k

(
U

j

(
) 
k)

. (6.89) 

Identifying the mean holding interval, U j with 1/⌫j , this is the same result that we estab­
lished for the Markov process case. Using the same arguments, we find this is valid for the 
semi-Markov case. It is valid both in the conventional case where each pj is positive and P

j pj = 1, and also in the case where 
P

k ⇡kU(k) = 1, where each pj = 0. The analysis is 
based on the fact that successive transitions to some given state, say j, given X0 = i, form 
a delayed renewal process. 
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Lemma 6.8.2. Consider a semi-Markov process with an irreducible recurrent embedded 
chain {Xn; n � 0}. Given X0 = i, let {Mij(t); t � 0} be the number of transitions into a 
given state j in the interval (0, t]. Then {Mij (t); t � 0} is a delayed renewal process (or, if 
j = i, is an ordinary renewal process). 

This is the same as Lemma 6.2.2, but it is not quite so obvious that successive intervals be­
tween visits to state j are statistically independent. This can be seen, however, from Figure 
6.17, which makes it clear that, given Xn = j, the future holding intervals, Un, Un+1, . . . , 
are independent of the past intervals Un�1, Un�2, . . . . 

Next, using the same renewal reward process as in Lemma 6.2.3, assigning reward 1 when­
ever X(t) = j, we define Wn as the interval between the n � 1st and the nth entry to state 
j and get the following lemma: 

Lemma 6.8.3. Consider a semi-Markov process with an irreducible, recurrent, embedded 
Markov chain starting in X0 = i. Then with probability 1, the limiting time-average in state 

j is given by pj(i) = Uj . 
W (j) 

This lemma has omitted any assertion about the limiting ensemble probability of state j, 
i.e., limt!1 Pr{X(t) = j}. This follows easily from Blackwell’s theorem, but depends on 
whether the successive entries to state j, i.e., {Wn; n � 1}, are arithmetic or non-arithmetic. 
This is explored in Exercise 6.33. The lemma shows (as expected) that the limiting time-
average in each state is independent of the starting state, so we henceforth replace pj (i) 
with pj . 

Next, let Mi(t) be the total number of transitions in the semi-Markov process up to and 
including time n, given X0 = i. This is not a renewal counting process, but, as with 
Markov processes, it provides a way to combine the time-average results for all states j. 
The following theorem is the same as that for Markov processes, except for the omission of 
ensemble average results. 

Theorem 6.8.1. Consider a semi Markov process with an irreducible, positive-recurrent, 
embedded Markov chain. Let {⇡j ; j � 0} be the steady-state probabilities of the embedded 
chain and let X0 = i be the starting state. Then, with probability 1, the limiting time-average 
fraction of time spent in any arbitrary state j is given by 

pj = P⇡

k

j 

⇡

U

k

(
U

j)
(j)

. (6.90) 

The expected time between returns to state j is 

W (j) = 

P
k ⇡kU(k) 

, (6.91) 
⇡j 

and the rate at which transitions take place is independent of X0 and given by 

lim 
Mi(t) =

1 
WP1. (6.92)

t!1 t 
P

k ⇡kU(k) 
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For a semi-Markov process, knowing the steady state probability of X(t) = j for large t does 
not completely specify the steady-state behavior. Another important steady state question 
is to determine the fraction of time involved in i to j transitions. To make this notion 
precise, define Y (t) as the residual time until the next transition after time t (i e., t + Y (t) 
is the epoch of the next transition after time t). We want to determine the fraction of time 
t over which X(t) = i and X(t + Y (t)) = j. Equivalently, for a non-arithmetic process, 
we want to determine Pr{X(t) = i,X(t + Y (t) = j)} in the limit as t !1. Call this limit 
Q(i, j). 

Consider a renewal process, starting in state i and with renewals on transitions to state 
i. Define a reward R(t) = 1 for X(t) = i, X(t + Y (t)) = j and R(t) = 0 otherwise (see 
Figure 6.18). That is, for each n such that X(Sn) = i and X(Sn+1) = j, R(t) = 1 for 
Sn  t < Sn+1. The expected reward in an inter-renewal interval is then Pij U(i, j) . It 
follows that Q(i, j) is given by 

t R(⌧)(d⌧ Pij U(i, j) piPij U(i, j)0Q(i, j) = lim 

R
= = . (6.93)

t!1 t W (i) U(i) 

t 

t 

t t t t 

t 

t 

Un -� 

Xn =i Xn+1=j Xn+2=j Xn+3=i Xn+4=j Xn+5=i Xn+6=j6 6
� Wk 

-

Figure 6.18: The renewal-reward process for i to j transitions. The expected value of 
Un if Xn = i and Xn+1 = j is U(i, j) and the expected interval between entries to i is 
W (i). 

6.8.1 Example — the M/G/1 queue 

As one example of a semi-Markov chain, consider an M/G/1 queue. Rather than the usual 
interpretation in which the state of the system is the number of customers in the system, 
we view the state of the system as changing only at departure times; the new state at a 
departure time is the number of customers left behind by the departure. This state then 
remains fixed until the next departure. New customers still enter the system according to 
the Poisson arrival process, but these new customers are not considered as part of the state 
until the next departure time. The number of customers in the system at arrival epochs 
does not in general constitute a “state” for the system, since the age of the current service 
is also necessary as part of the statistical characterization of the process. 

One purpose of this example is to illustrate that it is often more convenient to visualize 
the transition interval Un = Sn � Sn�1 as being chosen first and the new state Xn as being 
chosen second rather than choosing the state first and the transition time second. For the 
M/G/1 queue, first suppose that the state is some i > 0. In this case, service begins on 
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the next customer immediately after the old customer departs. Thus, Un, conditional on 
Xn = i for i > 0, has the distribution of the service time, say G(u). The mean interval until 
a state transition occurs is 

U(i) = 
Z 1 

[1 � G(u)]du; i > 0. (6.94) 
0 

Given the interval u for a transition from state i > 0, the number of arrivals in that period 
is a Poisson random variable with mean �u, where � is the Poisson arrival rate. Since the 
next state j is the old state i, plus the number of new arrivals, minus the single departure, 

(�u)j+i+1 exp(��u)
Pr{Xn+1 = j | Xn = i, Un = u} =

(j � i + 1)! 
. (6.95) 

for j � i � 1. For j < i � 1, the probability above is 0. The unconditional probability Pij 

of a transition from i to j can then be found by multiplying the right side of (6.95) by the 
probability density g(u) of the service time and integrating over u. 

Pij = 
Z 1 G(u)(�u)j�i+1 exp(��u) 

du; j � i � 1, i > 0. (6.96)
(j � i + 1) 0 

For the case i = 0, the server must wait until the next arrival before starting service. Thus 
the expected time from entering the empty state until a service completion is 

U(0) = (1/�) + 
Z 1 

[1 � G(u)]du. (6.97) 
0 

We can evaluate P0j by observing that the departure of that first arrival leaves j customers 
in this system if and only if j customers arrive during the service time of that first customer; 
i.e., the new state doesn’t depend on how long the server waits for a new customer to serve, 
but only on the arrivals while that customer is being served. Letting g(u) be the density of 
the service time, 

P0j = 
Z 1 g(u)(�u)j exp(��u) 

du; (6.98)
j! 

j � 0. 
0 

6.9 Summary 

We have seen that Markov processes with countable state spaces are remarkably similar 
to Markov chains with countable state spaces, and throughout the chapter, we frequently 
made use of both the embedded chain corresponding to the process and to the sampled 
time approximation to the process. 

For irreducible processes, the steady-state equations, (6.23) and 
P

i pi⌫i = 1, were found 
to specify the steady-state probabilities, pi, which have significance both as time-averages 
and as limiting probabilities. If the transition rates ⌫i are bounded, then the sampled-time 
approximation exists and has the same steady-state probabilities as the Markov process 
itself. If the transition rates ⌫i are unbounded but 

P
i pi⌫i < 1, then the embedded chain 
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is positive recurrent and has steady-state probabilities, but the sampled-time approximation 
does not exist. We assumed throughout the remainder of the chapter that 

P
i pi⌫i < 1. 

This ruled out irregular processes in which there is no meaningful steady state, and also 
some peculiar processes such as that in Exercise 6.9 where the embedded chain is null 
recurrent. 

Section 6.3 developed the Kolmogoro↵ backward and forward di↵erential equations for the 
transient probabilities Pij (t) of being in state j at time t given state i at time 0. We showed 
that for finite-state processes, these equations can be solved by finding the eigenvalues 
and eigenvectors of the transition rate matrix Q. There are close analogies between this 
analysis and the algebraic treatment of finite-state Markov chains in chapter 3, and exercise 
6.7 showed how the transients of the process are related to the transients of the sampled 
time approximation. 

For irreducible processes with bounded transition rates, uniformization was introduced as a 
way to simplify the structure of the process. The addition of self transitions does not change 
the process itself, but can be used to adjust the transition rates ⌫i to be the same for all 
states. This changes the embedded Markov chain, and the steady-state probabilities for the 
embedded chain become the same as those for the process. The epochs at which transitions 
occur then form a Poisson process which is independent of the set of states entered. This 
yields a separation between the transition epochs and the sequence of states. 

The next two sections analyzed birth-death processes and reversibility. The results about 
birth-death Markov chains and reversibility for Markov chains carried over almost without 
change to Markov processes. These results are central in queueing theory, and Burke’s 
theorem allowed us to look at simple queueing networks with no feedback and to understand 
how feedback complicates the problem. 

Jackson networks were next discussed. These are important in their own right and also 
provide a good example of how one can solve complex queueing problems by studying the 
reverse time process and making educated guesses about the steady-state behavior. The 
somewhat startling result here is that in steady state, and at a fixed time, the number 
of customers at each node is independent of the number at each other node and satisfies 
the same distribution as for an M/M/1 queue. Also the exogenous departures from the 
network are Poisson and independent from node to node. We emphasized that the number 
of customers at one node at one time is often dependent on the number at other nodes at 
other times. The independence holds only when all nodes are viewed at the same time. 

Finally, semi-Markov processes were introduced. Renewal theory again provided the key to 
analyzing these systems. Theorem 6.8.1 showed how to find the steady-state probabilities 
of these processes, and it was shown that these probabilities could be interpreted both as 
time-averages and, in the case of non-arithmetic transition times, as limiting probabilities 
in time. 

For further reading on Markov processes, see [13], [16], [22], and [8]. 
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6.10 Exercises 

Exercise 6.1. Consider an M/M/1 queue as represented in Figure 6.4. Assume throughout 
that X0 = i where i > 0. The purpose of this exercise is to understand the relationship 
between the holding interval until the next state transition and the interval until the next 
arrival to the M/M/1 queue. Your explanations in the following parts can and should be 
very brief. 

a) Explain why the expected holding interval E [U1|X0 = i] until the next state transition 
is 1/(� + µ). 

b) Explain why the expected holding interval U1, conditional on X0 = i and X1 = i + 1, is 

E [U1|X0 = i, X1 = i + 1] = 1/(� + µ). 

Show that E [U1|X0 = i,X1 = i � 1] is the same. 

c) Let V be the time of the first arrival after time 0 (this may occur either before or after 
the time W of the first departure.) Show that 

1 
E [V |X0 = i, X1 = i + 1] = 

� + µ 
1 1 

E [V |X0 = i, X1 = i � 1] = 
� + µ 

+ 
�

. 

Hint: In the second equation, use the memorylessness of the exponential rv and the fact 
that V under this condition is the time to the first departure plus the remaining time to an 
arrival. 

d) Use your solution to part c) plus the probability of moving up or down in the Markov 
chain to show that E [V ] = 1/�. (Note: you already know that E [V ] = 1/�. The purpose 
here is to show that your solution to part c) is consistent with that fact.) 

Exercise 6.2. Consider a Markov process for which the embedded Markov chain is a birth-
death chain with transition probabilities Pi,i+1 = 2/5 for all i � 0, Pi,i�1 = 3/5 for all i � 1, 
P01 = 1, and Pij = 0 otherwise. 

a) Find the steady-state probabilities {⇡i; i � 0} for the embedded chain. 

b) Assume that the transition rate ⌫i out of state i, for i � 0, is given by ⌫i = 2i . Find 
the transition rates {qij } between states and find the steady-state probabilities {pi} for the 
Markov process. Explain heuristically why ⇡i =6 pi. 

c) Explain why there is no sampled-time approximation for this process. Then truncate the 
embedded chain to states 0 to m and find the steady-state probabilities for the sampled-time 
approximation to the truncated process. 

d) Show that as m ! 1, the steady-state probabilities for the sequence of sampled-time 
approximations approaches the probabilities pi in part b). 
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Exercise 6.3. Consider a Markov process for which the embedded Markov chain is a birth-
death chain with transition probabilities Pi,i+1 = 2/5 for all i � 1, Pi,i�1 = 3/5 for all i � 1, 
P01 = 1, and Pij = 0 otherwise. 

a) Find the steady-state probabilities {⇡i; i � 0} for the embedded chain. 

b) Assume that the transition rate out of state i, for i � 0, is given by ⌫i = 2�i . Find the 
transition rates {qij } between states and show that there is no probability vector solution 
{pi; i � 0} to (6.23). 

e) Argue that the expected time between visits to any given state i is infinite. Find the 
expected number of transitions between visits to any given state i. Argue that, starting 
from any state i, an eventual return to state i occurs with probability 1. 

f) Consider the sampled-time approximation of this process with � = 1. Draw the graph of 
the resulting Markov chain and argue why it must be null-recurrent. 

Exercise 6.4. Consider the Markov process for the M/M/1 queue, as given in Figure 6.4. 

a) Find the steady state process probabilities (as a function of ⇢ = �/µ) from (6.15) and 
also as the solution to (6.23). Verify that the two solutions are the same. 

b) For the remaining parts of the exercise, assume that ⇢ = 0.01, thus ensuring (for aiding 
intuition) that states 0 and 1 are much more probable than the other states. Assume that 
the process has been running for a very long time and is in steady state. Explain in your own 
words the di↵erence between ⇡1 (the steady-state probability of state 1 in the embedded 
chain) and p1 (the steady-state probability that the process is in state 1. More explicitly, 
what experiments could you perform (repeatedly) on the process to measure ⇡1 and p1. 

c) Now suppose you want to start the process in steady state. Show that it is impossible to 
choose initial probabilities so that both the process and the embedded chain start in steady 
state. Which version of steady state is closest to your intuitive view? (There is no correct 
answer here, but it is important to realiize that the notion of steady state is not quite as 
simple as you might imagine). 

d) Let M(t) be the number of transitions (counting both arrivals and departures) that take 
place by time t in this Markov process and assume that the embedded Markov chain starts 
in steady state at time 0. Let U1, U2, . . . , be the sequence of holding intervals between tran­
sitions (with U1 being the time to the first transition). Show that these rv’s are identically 
distributed. Show by example that they are not independent (i.e., M(t) is not a renewal 
process). 

Exercise 6.5. Consider the Markov process illustrated below. The transitions are labelled 
by the rate qij at which those transitions occur. The process can be viewed as a single 
server queue where arrivals become increasingly discouraged as the queue lengthens. The 
word time-average below refers to the limiting time-average over each sample-path of the 
process, except for a set of sample paths of probability 0. 

� �/2 �/3 �/4 
z z z zn X n X n X n X 4n. . . 0 X 1 X 2 X 3 Xy y y y 

µ µ µ µ 
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a) Find the time-average fraction of time pi spent in each state i > 0 in terms of p0 and 
then solve for p0. Hint: First find an equation relating pi to pi+1 for each i. It also may 

xhelp to recall the power series expansion of e . 

b) Find a closed form solution to 
P

i pi⌫i where ⌫i is the departure rate from state i. 
Show that the process is positive recurrent for all choices of � > 0 and µ > 0 and explain 
intuitively why this must be so. 

c) For the embedded Markov chain corresponding to this process, find the steady-state 
probabilities ⇡i for each i � 0 and the transition probabilities Pij for each i, j. 

d) For each i, find both the time-average interval and the time-average number of overall 
state transitions between successive visits to i. 

Exercise 6.6. (Detail from proof of Theorem 6.2.1) a) Let Un be the nth holding interval 
for a Markov process starting in steady state, with Pr{X0 = i} = ⇡i. Show that E [Un] = P

k ⇡k/⌫k for each integer n. 

b) Let Sn be the epoch of the nth transition. Show that Pr{Sn � n�}  
P

k ⇡k/⌫k for all 
� > 0. 

c) Let M(t) be the number of transitions of the Markov process up to time t, given that 
X0 is in steady state. Show that Pr{M(n�) < n} > 1 � 

P
k ⇡k/⌫k . 

d) Show that if 
P

k ⇡k/⌫k is finite, then limt!1 M(t)/t = 0 WP1 is impossible. (Note that 
this is equivalent to showing that limt!1 M(t)/t = 0 WP1 implies 

P
k ⇡k/⌫k = 1). 

e) Let Mi(t) be the number of transitions by time t starting in state i. Show that if P
k ⇡k/⌫k is finite, then limt!1 Mi(t)/t = 0 WP1 is impossible. 

Exercise 6.7. a) Consider the process in the figure below. The process starts at X(0) = 1, 
and for all i � 1, Pi,i+1 = 1 and ⌫i = i2 for all i. Let Sn be the epoch when the nth transition 
occurs. Show that 

n

E [Sn] = 
X 

i�2 < 2 for all n. 
i=1 

Hint: Upper bound the sum from i = 2 by integrating x�2 from x = 1. 

n 1 - n 4 - n 9 - n 16 -1 2 3 4 

b) Use the Markov inequality to show that Pr{Sn > 4}  1/2 for all n. Show that the 
probability of an infinite number of transitions by time 4 is at least 1/2. 

Exercise 6.8. a) Consider a Markov process with the set of states {0, 1, . . . } in which the 
transition rates {qij} between states are given by qi,i+1 = (3/5)2i for i � 0, qi,i�1 = (2/5)2i 
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for i � 1, and qij = 0 otherwise. Find the transition rate ⌫i out of state i for each i � 0 
and find the transition probabilities {Pij} for the embedded Markov chain. 

b) Find a solution {pi; i � 0} with 
P

i pi = 1 to (6.23). 

c) Show that all states of the embedded Markov chain are transient. 

d) Explain in your own words why your solution to part b) is not in any sense a set of 
steady-state probabilities 

Exercise 6.9. Let qi,i+1 = 2i�1 for all i � 0 and let qi,i�1 = 2i�1 for all i � 1. All other 
transition rates are 0. 

a) Solve the steady-state equations and show that pi = 2�i�1 for all i � 0. 

b) Find the transition probabilities for the embedded Markov chain and show that the chain 
is null recurrent. 

c) For any state i, consider the renewal process for which the Markov process starts in state 
i and renewals occur on each transition to state i. Show that, for each i � 1, the expected 
inter-renewal interval is equal to 2. Hint: Use renewal-reward theory. 

d) Show that the expected number of transitions between each entry into state i is infinite. 
Explain why this does not mean that an infinite number of transitions can occur in a finite 
time. 

Exercise 6.10. a) Consider the two state Markov process of Example 6.3.1 with q01 = � 
and q10 = µ. Find the eigenvalues and eigenvectors of the transition rate matrix [Q]. 

b) If [Q] has M distinct eigenvalues, the di↵erential equation d[P (t)]/dt = [Q][P (t)] can be 
solved by the equation 

M

[P (t)] = 
X 

⌫⌫⌫ie t�i pT 
i, 

i=1 

where pi and ⌫⌫⌫i are the left and right eigenvectors of eigenvalue �i. Show that this equation 
gives the same solution as that given for Example 6.3.1. 

Exercise 6.11. Consider the three state Markov process below; the number given on edge 
(i, j) is qij , the transition rate from i to j. Assume that the process is in steady state. 

1✏� ✏�
q1 i 21 
* 

I 
2 4


2
 4 ✏�
R 3 ⇡ 



305 6.10. EXERCISES 

a) Is this process reversible? 

b) Find pi, the time-average fraction of time spent in state i for each i. 

c) Given that the process is in state i at time t, find the mean delay from t until the process 
leaves state i. 

d) Find ⇡i, the time-average fraction of all transitions that go into state i for each i. 

e) Suppose the process is in steady state at time t. Find the steady state probability that 
the next state to be entered is state 1. 

f) Given that the process is in state 1 at time t, find the mean delay until the process first 
returns to state 1. 

g) Consider an arbitrary irreducible finite-state Markov process in which qij = qji for all 
i, j. Either show that such a process is reversible or find a counter example. 

Exercise 6.12. a) Consider an M/M/1 queueing system with arrival rate �, service rate 
µ, µ > �. Assume that the queue is in steady state. Given that an arrival occurs at time t, 
find the probability that the system is in state i immediately after time t. 

b) Assuming FCFS service, and conditional on i customers in the system immediately after 
the above arrival, characterize the time until the above customer departs as a sum of random 
variables. 

c) Find the unconditional probability density of the time until the above customer de­
parts. Hint: You know (from splitting a Poisson process) that the sum of a geometrically 
distributed number of IID exponentially distributed random variables is exponentially dis­
tributed. Use the same idea here. 

Exercise 6.13. a) Consider an M/M/1 queue in steady state. Assume ⇢ = �/µ < 1. Find 
the probability Q(i, j) for i � j > 0 that the system is in state i at time t and that i � j 
departures occur before the next arrival. 

b) Find the PMF of the state immediately before the first arrival after time t. 

c) There is a well-known queueing principle called PASTA, standing for “Poisson arrivals 
see time-averages”. Given your results above, give a more precise statement of what that 
principle means in the case of the M/M/1 queue. 

Exercise 6.14. A small bookie shop has room for at most two customers. Potential cus­
tomers arrive at a Poisson rate of 10 customers per hour; they enter if there is room and 
are turned away, never to return, otherwise. The bookie serves the admitted customers in 
order, requiring an exponentially distributed time of mean 4 minutes per customer. 

a) Find the steady-state distribution of number of customers in the shop. 

b) Find the rate at which potential customers are turned away. 

c) Suppose the bookie hires an assistant; the bookie and assistant, working together, now 
serve each customer in an exponentially distributed time of mean 2 minutes, but there is 
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only room for one customer (i.e., the customer being served) in the shop. Find the new 
rate at which customers are turned away. 

Exercise 6.15. This exercise explores a continuous time version of a simple branching 
process. 

Consider a population of primitive organisms which do nothing but procreate and die. 
In particular, the population starts at time 0 with one organism. This organism has an 
exponentially distributed lifespan T0 with rate µ (i.e., Pr{T0 � ⌧} = e�µ⌧ ). While this 
organism is alive, it gives birth to new organisms according to a Poisson process of rate �. 
Each of these new organisms, while alive, gives birth to yet other organisms. The lifespan 
and birthrate for each of these new organisms are independently and identically distributed 
to those of the first organism. All these and subsequent organisms give birth and die in the 
same way, again indepedently of all other organisms. 

a) Let X(t) be the number of (live) organisms in the population at time t. Show that 
{X(t); t � 0} is a Markov process and specify the transition rates between the states. 

b) Find the embedded Markov chain {Xn; n � 0} corresponding to the Markov process in 
part a). Find the transition probabilities for this Markov chain. 

c) Explain why the Markov process and Markov chain above are not irreducible. Note: The 
majority of results you have seen for Markov processes assume the process is irreducible, so 
be careful not to use those results in this exercise. 

d) For purposes of analysis, add an additional transition of rate � from state 0 to state 1. 
Show that the Markov process and the embedded chain are irreducible. Find the values of 
� and µ for which the modified chain is positive recurrent, null-recurrent, and transient. 

e) Assume that � < µ. Find the steady state process probabilities for the modified Markov 
process. 

f) Find the mean recurrence time between visits to state 0 for the modified Markov process. 

g) Find the mean time T for the population in the original Markov process to die out. Note: 
We have seen before that removing transitions from a Markov chain or process to create a 
trapping state can make it easier to find mean recurrence times. This is an example of the 
opposite, where adding an exit from a trapping state makes it easy to find the recurrence 
time. 

Exercise 6.16. Consider the job sharing computer system illustrated below. Incoming jobs 
arrive from the left in a Poisson stream. Each job, independently of other jobs, requires 
pre-processing in system 1 with probability Q. Jobs in system 1 are served FCFS and the 
service times for successive jobs entering system 1 are IID with an exponential distribution 
of mean 1/µ1. The jobs entering system 2 are also served FCFS and successive service 
times are IID with an exponential distribution of mean 1/µ2. The service times in the two 
systems are independent of each other and of the arrival times. Assume that µ1 > �Q and 
that µ2 > �. Assume that the combined system is in steady state. 
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System 1 
µ1 

System 2 
µ2 

-
-

-
-� Q 

1�Q 

a Is the input to system 1 Poisson? Explain. 

b) Are each of the two input processes coming into system 2 Poisson? Explain. 

d) Give the joint steady-state PMF of the number of jobs in the two systems. Explain 
briefly. 

e) What is the probability that the first job to leave system 1 after time t is the same as 
the first job that entered the entire system after time t? 

f) What is the probability that the first job to leave system 2 after time t both passed 
through system 1 and arrived at system 1 after time t? 

Exercise 6.17. Consider the following combined queueing system. The first queue system 
is M/M/1 with service rate µ1. The second queue system has IID exponentially distributed 
service times with rate µ2. Each departure from system 1 independently 1 � Q1. System 
2 has an additional Poisson input of rate �2, independent of inputs and outputs from the 
first system. Each departure from the second system independently leaves the combined 
system with probability Q2 and re-enters system 2 with probability 1 � Q2. For parts a), 
b), c) assume that Q2 = 1 (i.e., there is no feedback). 

�2 -
- System 1 - System 2 �1 Q1 Q2 -

µ1 - µ2 

1�Q2? 
(part d)) 1�Q1 

a) Characterize the process of departures from system 1 that enter system 2 and characterize 
the overall process of arrivals to system 2. 

b) Assuming FCFS service in each system, find the steady state distribution of time that 
a customer spends in each system. 

c) For a customer that goes through both systems, show why the time in each system is 
independent of that in the other; find the distribution of the combined system time for such 
a customer. 

d) Now assume that Q2 < 1. Is the departure process from the combined system Poisson? 
Which of the three input processes to system 2 are Poisson? Which of the input processes 
are independent? Explain your reasoning, but do not attempt formal proofs. 

Exercise 6.18. Suppose a Markov chain with transition probabilities {Pij} is reversible. 
Suppose we change the transition probabilities out of state 0 from {P0j ; j � 0} to {P0

0
j ; j � 
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Assuming that all Pij for i = 0 are unchanged, what is the most general way in which 0}. 6
we can choose {P 0 ; j � 0} so as to maintain reversibility? Your answer should be explicit 0j
about how the steady-state probabilities {⇡i; i � 0} are changed. Your answer should also 
indicate what this problem has to do with uniformization of reversible Markov processes, if 
anything. Hint: Given Pij for all i, j, a single additional parameter will su�ce to specify 
P0
0
j for all j. 

Exercise 6.19. Consider the closed queueing network in the figure below. There are three 
customers who are doomed forever to cycle between node 1 and node 2. Both nodes use 
FCFS service and have exponentially distributed IID service times. The service times at one 
node are also independent of those at the other node and are independent of the customer 
being served. The server at node i has mean service time 1/µi, i = 1, 2. Assume to be 
specific that µ2 < µ1. 

Node 1 

� 

- µ1 

Node 2 
µ2 

a) The system can be represented by a four state Markov process. Draw its graphical 
representation and label it with the individual states and the transition rates between 
them. 

b) Find the steady-state probability of each state. 

c) Find the time-average rate at which customers leave node 1. 

d) Find the time-average rate at which a given customer cycles through the system. 

e) Is the Markov process reversible? Suppose that the backward Markov process is inter­
preted as a closed queueing network. What does a departure from node 1 in the forward 
process correspond to in the backward process? Can the transitions of a single customer 
in the forward process be associated with transitions of a single customer in the backward 
process? 

Exercise 6.20. Consider an M/G/1 queueing system with last come first serve (LCFS) 
pre-emptive resume service. That is, customers arrive according to a Poisson process of 
rate �. A newly arriving customer interrupts the customer in service and enters service 
itself. When a customer is finished, it leaves the system and the customer that had been 
interrupted by the departing customer resumes service from where it had left o↵. For 
example, if customer 1 arrives at time 0 and requires 2 units of service, and customer 2 
arrives at time 1 and requires 1 unit of service, then customer 1 is served from time 0 to 1; 
customer 2 is served from time 1 to 2 and leaves the system, and then customer 1 completes 
service from time 2 to 3. Let Xi be the service time required by the ith customer; the Xi are 
IID random variables with expected value E [X]; they are independent of customer arrival 
times. Assume � E [X] < 1. 
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a) Find the mean time between busy periods (i.e., the time until a new arrival occurs after 
the system becomes empty). 

b) Find the time-average fraction of time that the system is busy. 

c) Find the mean duration, E [B], of a busy period. Hint: use a) and b). 

d) Explain briefly why the customer that starts a busy period remains in the system for 
the entire busy period; use this to find the expected system time of a customer given that 
that customer arrives when the system is empty. 

e) Is there any statistical dependence between the system time of a given customer (i.e., 
the time from the customer’s arrival until departure) and the number of customers in the 
system when the given customer arrives? 

f) Show that a customer’s expected system time is equal to E [B]. Hint: Look carefully at 
your answers to d) and e). 

g) Let C be the expected system time of a customer conditional on the service time X 
of that customer being 1. Find (in terms of C) the expected system time of a customer 
conditional on X = 2; (Hint: compare a customer with X = 2 to two customers with X = 1 
each); repeat for arbitrary X = x. 

h) Find the constant C. Hint: use f) and g); don’t do any tedious calculations. 

Exercise 6.21. Consider a queueing system with two classes of customers, type A and type 
B. Type A customers arrive according to a Poisson process of rate �A and customers of type 
B arrive according to an independent Poisson process of rate �B. The queue has a FCFS 
server with exponentially distributed IID service times of rate µ > �A + �B . Characterize 
the departure process of class A customers; explain carefully. Hint: Consider the combined 
arrival process and be judicious about how to select between A and B types of customers. 

Exercise 6.22. Consider a pre-emptive resume last come first serve (LCFS) queueing sys­
tem with two classes of customers. Type A customer arrivals are Poisson with rate �A and 
Type B customer arrivals are Poisson with rate �B. The service time for type A customers 
is exponential with rate µA and that for type B is exponential with rate µB. Each service 
time is independent of all other service times and of all arrival epochs. 

Define the “state” of the system at time t by the string of customer types in the system at 
t, in order of arrival. Thus state AB means that the system contains two customers, one 
of type A and the other of type B; the type B customer arrived later, so is in service. The 
set of possible states arising from transitions out of AB is as follows: 

ABA if another type A arrives. 

ABB if another type B arrives. 

A if the customer in service (B) departs. 

Note that whenever a customer completes service, the next most recently arrived resumes 
service, so the state changes by eliminating the final element in the string. 
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a) Draw a graph for the states of the process, showing all states with 2 or fewer customers 
and a couple of states with 3 customers (label the empty state as E). Draw an arrow, 
labelled by the rate, for each state transition. Explain why these are states in a Markov 
process. 

b) Is this process reversible. Explain. Assume positive recurrence. Hint: If there is a 
transition from one state S to another state S0, how is the number of transitions from S to 
S0 related to the number from S0 to S? 

c) Characterize the process of type A departures from the system (i.e., are they Poisson?; 
do they form a renewal process?; at what rate do they depart?; etc.) 

d) Express the steady-state probability Pr{A} of state A in terms of the probability of 
the empty state Pr{E}. Find the probability Pr{AB} and the probability Pr{ABBA} in 
terms of Pr{E}. Use the notation ⇢A = �A/µA and ⇢B = �B/µB. 

e) Let Qn be the probability of n customers in the system, as a function of Q0 = Pr{E}. 
nShow that Qn = (1 � ⇢)⇢ where ⇢ = ⇢A + ⇢B. 

Exercise 6.23. a) Generalize Exercise 6.22 to the case in which there are m types of 
customers, each with independent Poisson arrivals and each with independent exponential 
service times. Let �i and µi be the arrival rate and service rate respectively of the ith user. 
Let ⇢i = �i/µi and assume that ⇢ = ⇢1 + ⇢2 + + ⇢m < 1. In particular, show, as before · · · 

nthat the probability of n customers in the system is Qn = (1 � ⇢)⇢ for 0  n < 1. 

b) View the customers in part a) as a single type of customer with Poisson arrivals of rate 
� = 

P
i �i and with a service density 

P
i(�i/�)µi exp(�µix). Show that the expected service 

time is ⇢/�. Note that you have shown that, if a service distribution can be represented as 
a weighted sum of exponentials, then the distribution of customers in the system for LCFS 
service is the same as for the M/M/1 queue with equal mean service time. 

Exercise 6.24. Consider a k node Jackson type network with the modification that each 
node i has s servers rather than one server. Each server at i has an exponentially distributed 
service time with rate µi. The exogenous input rate to node i is ⇢i = �0Q0i and each output 
from i is switched to j with probability Qij and switched out of the system with probability 
Qi0 (as in the text). Let �i, 1  i  k, be the solution, for given �0, to 

k

�j = 
X 

�iQij ; 
i=0 

1  j  k and assume that �i < sµi; 1  i  k. Show that the steady-state probability of 
state m is 

k

Pr{m} = 
Y 

pi(mi), 
i=1 

where pi(mi) is the probability of state mi in an (M,M, s) queue. Hint: simply extend the 
argument in the text to the multiple server case. 
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Exercise 6.25. Suppose a Markov process with the set of states A is reversible and has 
steady-state probabilities pi; i 2 A. Let B be a subset of A and assume that the process 
is changed by setting qij = 0 for all i 2 B, j /2 B. Assuming that the new process (starting 
in B and remining in B) is irreducible, show that the new process is reversible and find its 
steady-state probabilities. 

Exercise 6.26. Consider a queueing system with two classes of customers. Type A cus­
tomer arrivals are Poisson with rate �A and Type B customer arrivals are Poisson with rate 
�B . The service time for type A customers is exponential with rate µA and that for type 
B is exponential with rate µB. Each service time is independent of all other service times 
and of all arrival epochs. 

a) First assume there are infinitely many identical servers, and each new arrival immediately 
enters an idle server and begins service. Let the state of the system be (i, j) where i and 
j are the numbers of type A and B customers respectively in service. Draw a graph of the 
state transitions for i  2, j  2. Find the steady-state PMF, {p(i, j); i, j � 0}, for the 
Markov process. Hint: Note that the type A and type B customers do not interact. 

b) Assume for the rest of the exercise that there is some finite number m of servers. Cus­
tomers who arrive when all servers are occupied are turned away. Find the steady-state 
PMF, {p(i, j); i, j � 0, i + j  m}, in terms of p(0, 0) for this Markov process. Hint: 
Combine part a) with the result of Exercise 6.25. 

c) Let Qn be the probability that there are n customers in service at some given time in 
steady state. Show that Qn = p(0, 0)⇢n/n! for 0  n  m where ⇢ = ⇢A + ⇢B, ⇢A = �A/µA, 
and ⇢B = �B/µB. Solve for p(0, 0). 

Exercise 6.27. a) Generalize Exercise 6.26 to the case in which there are K types of 
customers, each with independent Poisson arrivals and each with independent exponential 
service times. Let �k and µk be the arrival rate and service rate respectively for the kh user 
type, 1  k  K. Let ⇢k = �k/µk and ⇢ = ⇢1 + ⇢2 + + ⇢K . In particular, show, as before, · · · 
that the probability of n customers in the system is Qn = p(0, . . . , 0)⇢n/n! for 0  n  m. 

b) View the customers in part a) as a single type of customer with Poisson arrivals of rate 
� = 

P
k �k and with a service density 

P
k(�k/�)µk exp(�µkx). Show that the expected 

service time is ⇢/�. Note that what you have shown is that, if a service distribution can 
be represented as a weighted sum of exponentials, then the distribution of customers in the 
system is the same as for the M/M/m,m queue with equal mean service time. 

Exercise 6.28. Consider a sampled-time M/D/m/m queueing system. The arrival process 
is Bernoulli with probability � << 1 of arrival in each time unit. There are m servers; each 
arrival enters a server if a server is not busy and otherwise the arrival is discarded. If an 
arrival enters a server, it keeps the server busy for d units of time and then departs; d is 
some integer constant and is the same for each server. 

Let n, 0  n  m be the number of customers in service at a given time and let xi be 
the number of time units that the ith of those n customers (in order of arrival) has been 
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in service. Thus the state of the system can be taken as (n, x ) = (n, x1, x2, . . . , xn) where 
0  n  m and 1  x1 < x2 < . . . < xn  d. 

Let A(n, x ) denote the next state if the present state is (n, x ) and a new arrival enters 
service. That is, 

A(n, x ) = (n + 1, 1, x1 + 1, x2 + 1, . . . , xn + 1) for n < m and xn < d (6.99) 
A(n, x ) = (n, 1, x1 + 1, x2 + 1, . . . , xn�1 + 1) for n  m and xn = d. (6.100) 

That is, the new customer receives one unit of service by the next state time, and all the 
old customers receive one additional unit of service. If the oldest customer has received d 
units of service, then it leaves the system by the next state time. Note that it is possible for 
a customer with d units of service at the present time to leave the system and be replaced 
by an arrival at the present time (i.e., (6.100) with n = m, xn = d). Let B(n, x ) denote 
the next state if either no arrival occurs or if a new arrival is discarded. 

B(n, x ) = (n, x1 + 1, x2 + 1, . . . , xn + 1) for xn < d (6.101) 
B(n, x ) = (n � 1, x1 + 1, x2 + 1, . . . , xn�1 + 1) for xn = d. (6.102) 

a) Hypothesize that the backward chain for this system is also a sampled-time M/D/m/m 
queueing system, but that the state (n, x1, . . . , xn)(0  n  m, 1  x1 < x2 < . . . < xn  d) 
has a di↵erent interpretation: n is the number of customers as before, but xi is now the 
remaining service required by customer i. Explain how this hypothesis leads to the following 
steady-state equations: 

�⇡n,x = (1 � �)⇡A(n,x ) ; n < m,xn < d (6.103) 
�⇡n,x = �⇡A(n,x ) ; n  m,xn = d (6.104) 

(1 � �)⇡n,x = �⇡B(n,x ) ; n  m,xn = d (6.105) 
(1 � �)⇡n,x = (1 � �)⇡B(n,x ) ; n  m,xn < d. (6.106) 

b) Using this hypothesis, find ⇡n,x in terms of ⇡0, where ⇡0 is the probability of an empty 
system. Hint: Use (6.105) and (6.106); your answer should depend on n, but not x . 

c) Verify that the above hypothesis is correct. 

d) Find an expression for ⇡0. 

e) Find an expression for the steady-state probability that an arriving customer is discarded. 

Exercise 6.29. A taxi alternates between three locations. When it reaches location 1 it 
is equally likely to go next to either 2 or 3. When it reaches 2 it will next go to 1 with 
probability 1/3 and to 3 with probability 2/3. From 3 it always goes to 1. The mean time 
between locations i and j are t12 = 20, t13 = 30, t23 = 30. Assume tij = tji). 

Find the (limiting) probability that the taxi’s most recent stop was at location i, i = 1, 2, 3? 

What is the (limiting) probability that the taxi is heading for location 2? 

What fraction of time is the taxi traveling from 2 to 3. Note: Upon arrival at a location 
the taxi immediately departs. 
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Exercise 6.30. (Semi-Markov continuation of Exercise 6.5) a) Assume that the Markov 
process in Exercise 6.5 is changed in the following way: whenever the process enters state 0, 
the time spent before leaving state 0 is now a uniformly distributed rv, taking values from 0 
to 2/�. All other transitions remain the same. For this new process, determine whether the 
successive epochs of entry to state 0 form renewal epochs, whether the successive epochs 
of exit from state 0 form renewal epochs, and whether the successive entries to any other 
given state i form renewal epochs. 

a) For each i, find both the time-average interval and the time-average number of overall 
state transitions between successive visits to i. 

b) Is this modified process a Markov process in the sense that Pr{X(t) = i | X(⌧) = j,X(s) = k} = 
Pr{X(t) = i | X(⌧) = j} for all 0 < s < ⌧ < t and all i, j, k? Explain. 

Exercise 6.31. Consider an M/G/1 queueing system with Poisson arrivals of rate � and 
expected service time E [X]. Let ⇢ = �E [X] and assume ⇢ < 1. Consider a semi-Markov 
process model of the M/G/1 queueing system in which transitions occur on departures 
from the queueing system and the state is the number of customers immediately following 
a departure. 

a) Suppose a colleague has calculated the steady-state probabilities {pi} of being in state 
i for each i � 0. For each i � 0, find the steady-state probability pii of state i in the 
embedded Markov chain. Give your solution as a function of ⇢, ⇡i, and p0. 

b) Calculate p0 as a function of ⇢. 

c) Find ⇡i as a function of ⇢ and pi. 

d) Is pi the same as the steady-state probability that the queueing system contains i cus­
tomers at a given time? Explain carefully. 

Exercise 6.32. Consider an M/G/1 queue in which the arrival rate is � and the service 
time distributin is uniform (0, 2W ) with �W < 1. Define a semi-Markov chain following 
the framework for the M/G/1 queue in Section 6.8.1. 

a) Find P0j ; j � 0. 

b) Find Pij for i > 0; j � i � 1. 

Exercise 6.33. Consider a semi-Markov process for which the embedded Markov chain is 
irreducible and positive-recurrent. Assume that the distribution of inter-renewal intervals 
for one state j is arithmetic with span d. Show that the distribution of inter-renewal 
intervals for all states is arithmetic with the same span. 
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