
Chapter 1 

INTRODUCTION AND REVIEW 
OF PROBABILITY 

1.1 Probability models 

Probability theory is a central field of mathematics, widely applicable to scientific, techno­
logical, and human situations involving uncertainty. The most obvious applications are to 
situations, such as games of chance, in which repeated trials of essentially the same proce­
dure lead to di↵ering outcomes. For example, when we flip a coin, roll a die, pick a card 
from a shu✏ed deck, or spin a ball onto a roulette wheel, the procedure is the same from 
one trial to the next, but the outcome (heads (H) or tails (T ) in the case of a coin, one to 
six in the case of a die, etc.) varies from one trial to another in a seemingly random fashion. 

For the case of flipping a coin, the outcome of the flip could be predicted from the initial 
position, velocity, and angular momentum of the coin and from the nature of the surface 
on which it lands. Thus, in one sense, a coin flip is deterministic rather than random 
and the same can be said for the other examples above. When these initial conditions are 
unspecified, however, as when playing these games, the outcome can again be viewed as 
random in some intuitive sense. 

Many scientific experiments are similar to games of chance in the sense that multiple trials 
of apparently the same procedure lead to results that vary from one trial to another. In 
some cases, this variation is due to slight variations in the experimental procedure, in some 
it is due to noise, and in some, such as in quantum mechanics, the randomness is generally 
believed to be fundamental. Similar situations occur in many types of systems, especially 
those in which noise and random delays are important. Some of these systems, rather than 
being repetitions of a common basic procedure, are systems that evolve over time while still 
containing a sequence of underlying similar random occurrences. 

This intuitive notion of randomness, as described above, is a very special kind of uncertainty. 
Rather than involving a lack of understanding, it involves a type of uncertainty that can 
lead to probabilistic models with precise results. As in any scientific field, the models might 
or might not correspond to reality very well, but when they do correspond to reality, there 
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is the sense that the situation is completely understood, while still being random. 

For example, we all feel that we understand flipping a coin or rolling a die, but still accept 
randomness in each outcome. The theory of probability was developed particularly to give 
precise and quantitative understanding to these types of situations. The remainder of this 
section introduces this relationship between the precise view of probability theory and the 
intuitive view as used in applications and everyday language. 

After this introduction, the following sections review probability theory as a mathematical 
discipline, with a special emphasis on the laws of large numbers. In the final section of this 
chapter, we use the theory and the laws of large numbers to obtain a fuller understanding 
of the relationship between theory and the real world.1 

Probability theory, as a mathematical discipline, started to evolve in the 17th century 
and was initially focused on games of chance. The importance of the theory grew rapidly, 
particularly in the 20th century, and it now plays a central role in risk assessment, statistics, 
data networks, operations research, information theory, control theory, theoretical computer 
science, quantum theory, game theory, neurophysiology, and many other fields. 

The core concept in probability theory is that of a probability model. Given the extent of 
the theory, both in mathematics and in applications, the simplicity of probability models 
is surprising. The first component of a probability model is a sample space, which is a set 
whose elements are called outcomes or sample points. Probability models are particularly 
simple in the special case where the sample space is finite,2 and we consider only this case 
in the remainder of this section. The second component of a probability model is a class 
of events, which can be considered for now simply as the class of all subsets of the sample 
space. The third component is a probability measure, which can be regarded for now as 
the assignment of a nonnegative number to each outcome, with the restriction that these 
numbers must sum to one over the sample space. The probability of an event is the sum of 
the probabilities of the outcomes comprising that event. 

These probability models play a dual role. In the first, the many known results about various 
classes of models, and the many known relationships between models, constitute the essence 
of probability theory. Thus one often studies a model not because of any relationship to the 
real world, but simply because the model provides a building block or example useful for 
the theory and thus ultimately useful for other models. In the other role, when probability 
theory is applied to some game, experiment, or some other situation involving randomness, 
a probability model is used to represent the experiment (in what follows, we refer to all of 
these random situations as experiments). 

For example, the standard probability model for rolling a die uses {1, 2, 3, 4, 5, 6} as the 
sample space, with each possible outcome having probability 1/6. An odd result, i.e., the 
subset {1, 3, 5}, is an example of an event in this sample space, and this event has probability 

1It would be appealing to show how probability theory evolved from real-world random situations, but 
probability theory, like most mathematical theories, has evolved from complex interactions between the­
oretical developments and initially over-simplified models of real situations. The successes and flaws of 
such models lead to refinements of the models and the theory, which in turn suggest applications to totally 
di↵erent fields. 

2A number of mathematical issues arise with infinite sample spaces, as discussed in the following section. 
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1/2. The correspondence between model and actual experiment seems straightforward here. 
Both have the same set of outcomes and, given the symmetry between faces of the die, the 
choice of equal probabilities seems natural. On closer inspection, there is the following 
important di↵erence between the model and the actual rolling of a die. 

The above model corresponds to a single roll of a die, with a probability defined for each 
possible outcome. In a real-world experiment where a single die is rolled, an outcome k 
from 1 to 6 occurs, but there is no observable probability for k. 

Our intuitive notion of rolling dice, however, involves an experiment with repeated rolls of 
a die or rolls of di↵erent dice. With n rolls altogether, there are are 6n possible outcomes, 
one for each possible n-tuple of individual die outcomes. The standard probability model 
for this repeated-roll experiment is to assign probability 6�n to each possible n-tuple. In 
this n-repetition experiment, the real-world relative frequency of k, i.e., the fraction of rolls 
for which the result is k, can be compared with the sample value of the relative frequency 
of k in the model for repeated rolls. The sample value of the relative frequency of k in this 
n-repetition model resembles the probability of k in the single-roll experiment in a way to 
be explained later. This relationship through relative frequencies in a repeated experiment 
helps overcome the non-observable nature of probabilities in the real world. 

1.1.1 The sample space of a probability model 

An outcome or sample point in a probability model corresponds to a complete result (with 
all detail specified) of the experiment being modeled. For example, a game of cards is often 
appropriately modeled by the arrangement of cards within a shu✏ed 52 card deck, thus 
giving rise to a set of 52! outcomes (incredibly detailed, but trivially simple in structure), 
even though the entire deck might not be played in one trial of the game. A poker hand with 
4 aces is an event rather than an outcome in this model, since many arrangements of the 
cards can give rise to 4 aces in a given hand. The possible outcomes in a probability model 
(and in the experiment being modeled) are mutually exclusive and collectively constitute 
the entire sample space (space of possible results). An outcome is often called a finest grain 
result of the model in the sense that an outcome ! contains no subsets other than the empty 
set � and the singleton subset {!}. Thus events typically give only partial information about 
the result of the experiment, whereas an outcome fully specifies the result. 

In choosing the sample space for a probability model of an experiment, we often omit details 
that appear irrelevant for the purpose at hand. Thus in modeling the set of outcomes for a 
coin toss as {H,T }, we ignore the type of coin, the initial velocity and angular momentum 
of the toss, etc. We also omit the rare possibility that the coin comes to rest on its edge. 
Sometimes, conversely, the sample space is enlarged beyond what is relevant in the interest 
of structural simplicity. An example is the above use of a shu✏ed deck of 52 cards. 

The choice of the sample space in a probability model is similar to the choice of a math­
ematical model in any branch of science. That is, one simplifies the physical situation by 
eliminating detail of little apparent relevance. One often does this in an iterative way, using 
a very simple model to acquire initial understanding, and then successively choosing more 
detailed models based on the understanding from earlier models. 
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The mathematical theory of probability views the sample space simply as an abstract set of 
elements, and from a strictly mathematical point of view, the idea of doing an experiment 
and getting an outcome is a distraction. For visualizing the correspondence between the 
theory and applications, however, it is better to view the abstract set of elements as the set 
of possible outcomes of an idealized experiment in which, when the idealized experiment 
is performed, one and only one of those outcomes occurs. The two views are mathemati­
cally identical, but it will be helpful to refer to the first view as a probability model and 
the second as an idealized experiment. In applied probability texts and technical articles, 
these idealized experiments, rather than real-world situations are often the primary topic 
of discussion.3 

1.1.2 Assigning probabilities for finite sample spaces 

The word probability is widely used in everyday language, and most of us attach various 
intuitive meanings4 to the word. For example, everyone would agree that something virtu­
ally impossible should be assigned a probability close to 0 and something virtually certain 
should be assigned a probability close to 1. For these special cases, this provides a good 
rationale for choosing probabilities. The relationship between virtually and close to are un­
clear at the moment, but if there is some implied limiting process, we would all agree that, 
in the limit, certainty and impossibility correspond to probabilities 1 and 0 respectively. 

Between virtual impossibility and certainty, if one outcome appears to be closer to certainty 
than another, its probability should be correspondingly greater. This intuitive notion is im­
precise and highly subjective; it provides little rationale for choosing numerical probabilities 
for di↵erent outcomes, and, even worse, little rationale justifying that probability models 
bear any precise relation to real-world situations. 

Symmetry can often provide a better rationale for choosing probabilities. For example, the 
symmetry between H and T for a coin, or the symmetry between the the six faces of a die, 
motivates assigning equal probabilities, 1/2 each for H and T and 1/6 each for the six faces 
of a die. This is reasonable and extremely useful, but there is no completely convincing 
reason for choosing probabilities based on symmetry. 

Another approach is to perform the experiment many times and choose the probability of 
each outcome as the relative frequency of that outcome (i.e., the number of occurrences of 
that outcome divided by the total number of trials). Experience shows that the relative 
frequency of an outcome often approaches a limiting value with an increasing number of 
trials. Associating the probability of an outcome with that limiting relative frequency is 
certainly close to our intuition and also appears to provide a testable criterion between 
model and real world. This criterion is discussed in Sections 1.6.1 and 1.6.2 and provides 
a very concrete way to use probabilities, since it suggests that the randomness in a single 

3This is not intended as criticism, since we will see that there are good reasons to concentrate initially 
on such idealized experiments. However, readers should always be aware that modeling errors are the major 
cause of misleading results in applications of probability, and thus modeling must be seriously considered 
before using the results. 

4It is popular to try to define probability by likelihood, but this is unhelpful since the words are essentially 
synonyms. 
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trial tends to disappear in the aggregate of many trials. Other approaches to choosing 
probability models will be discussed later. 

1.2 The axioms of probability theory 

As the applications of probability theory became increasingly varied and complex during 
the 20th century, the need arose to put the theory on a firm mathematical footing. This 
was accomplished by an axiomatization of the theory, successfully carried out by the great 
Russian mathematician A. N. Kolmogorov [14] in 1932. Before stating and explaining these 
axioms of probability theory, the following two examples explain why the simple approach 
of the last section, assigning a probability to each sample point, often fails with infinite 
sample spaces. 

Example 1.2.1. Suppose we want to model the phase of a sine wave, where the phase is 
viewed as being “uniformly distributed” between 0 and 2⇡. If this phase is the only quantity 
of interest, it is reasonable to choose a sample space consisting of the set of real numbers 
between 0 and 2⇡. There are uncountably5 many possible phases between 0 and 2⇡, and 
with any reasonable interpretation of uniform distribution, one must conclude that each 
sample point has probability zero. Thus, the simple approach of the last section leads us to 
conclude that any event in this space with a finite or countably infinite set of sample points 
should have probability zero. That simple approach does not help in finding the probability, 
say, of the interval (0,⇡). 

For this example, the appropriate view is that taken in all elementary probability texts, 
namely to assign a probability density 2

1 
⇡ to the phase. The probability of an event can 

then usually be found by integrating the density over that event. Useful as densities are, 
however, they do not lead to a general approach over arbitrary sample spaces.6 

Example 1.2.2. Consider an infinite sequence of coin tosses. The usual probability model 
is to assign probability 2�n to each possible initial n-tuple of individual outcomes. Then 
in the limit n ! 1, the probability of any given sequence is 0. Again, expressing the 
probability of an event involving infinitely many tosses as a sum of individual sample-point 
probabilities does not work. The obvious approach (which we often adopt for this and 
similar situations) is to evaluate the probability of any given event as an appropriate limit, 
as n !1, of the outcome from the first n tosses. 

We will later find a number of situations, even for this almost trivial example, where working 
with a finite number of elementary experiments and then going to the limit is very awkward. 
One example, to be discussed in detail later, is the strong law of large numbers (SLLN). This 

5A set is uncountably infinite if it is infinite and its members cannot be put into one-to-one correspon­
dence with the positive integers. For example the set of real numbers over some interval such as (0, 2⇡) 
is uncountably infinite. The Wikipedia article on countable sets provides a friendly introduction to the 
concepts of countability and uncountability. 

6It is possible to avoid the consideration of infinite sample spaces here by quantizing the possible phases. 
This is analogous to avoiding calculus by working only with discrete functions. Both usually result in both 
artificiality and added complexity. 
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law looks directly at events consisting of infinite length sequences and is best considered in 
the context of the axioms to follow. 

Although appropriate probability models can be generated for simple examples such as those 
above, there is a need for a consistent and general approach. In such an approach, rather 
than assigning probabilities to sample points, which are then used to assign probabilities to 
events, probabilities must be associated directly with events. The axioms to follow establish 
consistency requirements between the probabilities of di↵erent events. The axioms, and 
the corollaries derived from them, are consistent with one’s intuition, and, for finite sample 
spaces, are consistent with our earlier approach. Dealing with the countable unions of events 
in the axioms will be unfamiliar to some students, but will soon become both familiar and 
consistent with intuition. 

The strange part of the axioms comes from the fact that defining the class of events as the 
set of all subsets of the sample space is usually inappropriate when the sample space is 
uncountably infinite. What is needed is a class of events that is large enough that we can 
almost forget that some very strange subsets are excluded. This is accomplished by having 
two simple sets of axioms, one defining the class of events,7 and the other defining the 
relations between the probabilities assigned to these events. In this theory, all events have 
probabilities, but those truly weird subsets that are not events do not have probabilities. 
This will be discussed more after giving the axioms for events. 

The axioms for events use the standard notation of set theory. Let ⌦ be the set of all sample 
points for a given experiment. The events are subsets of the sample space. The union of n 
subsets (events) A1, A2, · · · , An is denoted by either 

Sn Ai or A1 
S

· · · 
S

An, and consists i=1 
of all points in at least one of A1, . . . , An. Similarly, the intersection of these subsets is 
denoted by either 

Tn An and consists of all points in all of A1, . . . , An.i=1 Ai or8 A1A2 · · · 
A sequence of events is a collection of events in one-to-one correspondence with the positive 
integers, i.e., A1, A2, . . . , ad infinitum. A countable union, 

S1 Ai is the set of points in i=1 
one or more of A1, A2, . . . . Similarly, a countable intersection 

T1 Ai is the set of points i=1 
in all of A1, A2, . . . . Finally, the complement Ac of a subset (event) A is the set of points 
in ⌦ but not A. 

1.2.1 Axioms for events 

Given a sample space ⌦, the class of subsets of ⌦ that constitute the set of events satisfies 
the following axioms: 

1. ⌦ is an event. 
2. For every sequence of events A1, A2, . . . ,, the union 

S1 An is an event. n=1 

3. For every event A, the complement Ac is an event. 

There are a number of important corollaries of these axioms. First, the empty set � is an 
event. This follows from Axioms 1 and 3, since � = ⌦c. The empty set does not correspond 

7A class of elements satisfying these axioms is called a �-algebra or, less commonly, a �-field. 
8Intersection is also sometimes denoted as A1 

T 
· · · 

T 
An, but is usually abbreviated as A1A2 An.· · · 
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to our intuition about events, but the theory would be extremely awkward if it were omitted. 
Second, every finite union of events is an event. This follows by expressing A1 

S
· · · 

S
An as S1

i=1 Ai where Ai = � for all i > n. Third, every finite or countable intersection of events 
is an event. This follows from deMorgan’s law, 

h[
An

ic 
= 
\

An
c . 

n n 

Although we will not make a big fuss about these axioms in the rest of the text, we will 
be careful to use only complements and countable unions and intersections in our analysis. 
Thus subsets that are not events will not arise. 

Note that the axioms do not say that all subsets of ⌦ are events. In fact, there are many 
rather silly ways to define classes of events that obey the axioms. For example, the axioms 
are satisfied by choosing only the universal set ⌦ and the empty set � to be events. We 
shall avoid such trivialities by assuming that for each sample point !, the singleton subset 
{!} is an event. For finite sample spaces, this assumption, plus the axioms above, imply 
that all subsets are events. 

For uncountably infinite sample spaces, such as the sinusoidal phase above, this assumption, 
plus the axioms above, still leaves considerable freedom in choosing a class of events. As an 
example, the class of all subsets of ⌦ satisfies the axioms but surprisingly does not allow 
the probability axioms to be satisfied in any sensible way. How to choose an appropriate 
class of events requires an understanding of measure theory which would take us too far 
afield for our purposes. Thus we neither assume nor develop measure theory here.9 

From a pragmatic standpoint, we start with the class of events of interest, such as those 
required to define the random variables needed in the problem. That class is then extended 
so as to be closed under complementation and countable unions. Measure theory shows 
that this extension is always possible, and we simply accept that as a known result. 

1.2.2 Axioms of probability 

Given any sample space ⌦ and any class of events E satisfying the axioms of events, a 
probability rule is a function Pr{} mapping each A 2 E to a (finite10) real number in such 
a way that the following three probability axioms11 hold: 

1. Pr{⌦} = 1. 

2. For every event A, Pr{A} � 0. 

9There is no doubt that measure theory is useful in probability theory, and serious students of probability 
should certainly learn measure theory at some point. For application-oriented people, however, it seems 
advisable to acquire more insight and understanding of probability, at a graduate level, before concentrating 
on the abstractions and subtleties of measure theory. 

10The word finite is redundant here, since the set of real numbers, by definition, does not include ±1. 
The set of real numbers with ±1 appended, is called the set of extended real numbers 

11Sometimes finite additivity, (1.3), is added as an additional axiom. This addition is quite intuitive and 
avoids the technical and somewhat peculiar proofs given for (1.2) and (1.3). 



8 CHAPTER 1. INTRODUCTION AND REVIEW OF PROBABILITY 

3. The probability of the union of any sequence A1, A2, . . . of disjoint events is given by 

Pr
n[1 

An

o 
= 
X1 

Pr{An} , (1.1) 
n=1 n=1 

where 
P1 Pr{An} is shorthand for limm!1 

Pm Pr{An}. n=1 n=1 

The axioms imply the following useful corollaries: 

Pr{�} = 0 (1.2) 

Pr
n[m 

An

o 
= 

Xm 
Pr{An} for A1, . . . , Am disjoint (1.3) 

n=1 n=1 

Pr{Ac} = 1 � Pr{A} for all A (1.4) 
Pr{A}  Pr{B} for all A ✓ B (1.5) 
Pr{A}  1 for all A (1.6) X

Pr{An}  1 for A1, . . . , disjoint (1.7) 
n 

Pr
n[1 

An

o 
= lim Pr

n[m 
An

o 
(1.8) 

n=1 n=1m!1 

Pr
n[

n

1 

=1 
An

o 
= lim Pr{An} for A1 ✓ A2 ✓ · · · . (1.9) 

n!1 

To verify (1.2), consider a sequence of events, A1, A2, . . . , for which An = � for each 
n. These events are disjoint since � contains no outcomes, and thus has no outcomes in 
common with itself or any other event. Also, 

S
n An = � since this union contains no 

outcomes. Axiom 3 then says that 

m

Pr{�} = lim 
X

Pr{An} = lim mPr{�} . 
m!1 

n=1 
m!1 

Since Pr{�} is a real number, this implies that Pr{�} = 0.


To verify (1.3), apply Axiom 3 to the disjoint sequence A1, . . . , Am,�,�, . . . .


One might reasonably guess that (1.3), along with Axioms 1 and 2 implies Axiom 3. Exercise

1.3 shows why this guess is incorrect.


To verify (1.4), note that ⌦ = A 
S

Ac . Then apply (1.3) to the disjoint sets A and Ac .


To verify (1.5), note that if A ✓ B, then B = A 
S

(B � A) where B � A is an alternate way

to write B 

T
Ac . We see then that A and B � A are disjoint, so from (1.3), 

Pr{B} = Pr
n
A 
[

(B � A)
o 

= Pr{A} + Pr{B � A} � Pr{A} , 

where we have used Axiom 2 in the last step.


To verify (1.6) and (1.7), first substitute ⌦ for B in (1.5) and then substitute 
S

n An for A.


Finally, (1.8) is established in Exercise 1.4, part (e), and (1.9) is a simple consequence of

(1.8). 
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The axioms specify the probability of any disjoint union of events in terms of the individual 
event probabilities, but what about a finite or countable union of arbitrary events? Exercise 
1.4 (b) shows that in this case, (1.3) can be generalized to 

Pr
n[m 

An

o 
= 
Xm 

Pr{Bn} , (1.10) 
n=1 n=1 

where B1 = A1 and for each n > 1, Bn = An � 
Sn�1 Aj is the set of points in An but not in j=1 

any of the sets A1, . . . , An�1. The probability of a countable union is then given by (1.8). 
In order to use this, one must know not only the event probabilities for A1, A2 . . . , but also 
the probabilities of their intersections. The union bound, which is derived in Exercise 1.4 
(c), depends only on the individual event probabilities, and gives the following frequently 
useful upper bound on the union probability. 

Pr
n[

An

o 
 

X
Pr{An} (Union bound). (1.11) 

n n 

1.3 Probability review 

1.3.1 Conditional probabilities and statistical independence 

Definition 1.3.1. For any two events A and B (with Pr{B} > 0), the conditional proba­
bility of A, conditional on B, is defined by 

Pr{A|B} = Pr{AB} /Pr{B} . (1.12) 

One visualizes an experiment that has been partly carried out with B as the result. Then 
Pr{A|B} can be viewed as the probability of A normalized to a sample space restricted to 
event B. Within this restricted sample space, we can view B as the sample space (i.e., as 
the set of outcomes that remain possible upon the occurrence of B) and AB as an event 
within this sample space. For a fixed event B, we can visualize mapping each event A in the 
original space to event AB in the restricted space. It is easy to see that the event axioms 
are still satisfied in this restricted space. Assigning probability Pr{A|B} to each event AB 
in the restricted space, it is easy to see that the axioms of probability are satisfied when B is 
regarded as the entire sample space. In other words, everything we know about probability 
can also be applied to such a restricted probability space. 

Definition 1.3.2. Two events, A and B, are statistically independent (or, more briefly, 
independent) if 

Pr{AB} = Pr{A} Pr{B} . 

For Pr{B} > 0, this is equivalent to Pr{A|B} = Pr{A}. This latter form corresponds to 
our intuitive view of independence, since it says that the observation of B does not change 
the probability of A. Such intuitive statements about “observation” and “occurrence” are 
helpful in reasoning probabilistically, but sometimes cause confusion. For example, Bayes 
law, in the form Pr{A|B} Pr{B} = Pr{B|A} Pr{A}, is an immediate consequence of the 
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definition of conditional probability in (1.12). However, if we can only interpret Pr{A
when B is ‘observed’ or occurs ‘before’ A, then we cannot interpret Pr{B|A} and Pr{A

|
|
B} 

together. This caused immense confusion in probabilistic arguments before the axiomatic 
B} 

theory was developed. 

The notion of independence is of vital importance in defining, and reasoning about, proba­
bility models. We will see many examples where very complex systems become very simple, 
both in terms of intuition and analysis, when appropriate quantities are modeled as sta­
tistically independent. An example will be given in the next subsection where repeated 
independent experiments are used to understand arguments about relative frequencies. 

Often, when the assumption of independence turns out to be oversimplified, it is reasonable 
to assume conditional independence, where A and B are said to be conditionally independent 
given C if Pr{AB|C} = Pr{A|C} Pr{B|C}. Most of the stochastic processes to be studied 
here are characterized by particular forms of independence or conditional independence. 

For more than two events, the definition of statistical independence is a little more compli­
cated. 

Definition 1.3.3. The events A1, . . . , An, n > 2 are statistically independent if for each 
collection S of two or more of the integers 1 to n. 

Pr
n\

i2S 
Ai

o 
= 
Y

i2S 
Pr{Ai} . (1.13) 

This includes the entire collection {1, . . . , n}, so one necessary condition for independence 
is that 

Pr
n\n 

Ai

o 
= 
Yn 

Pr{Ai} . (1.14)
i=1 i=1 

It might be surprising that (1.14) does not imply (1.13), but the example in Exercise 1.5 
will help clarify this. This definition will become clearer (and simpler) when we see how to 
view independence of events as a special case of independence of random variables. 

1.3.2 Repeated idealized experiments 

Much of our intuitive understanding of probability comes from the notion of repeating 
the same idealized experiment many times (i.e., performing multiple trials of the same 
experiment). However, the axioms of probability contain no explicit recognition of such 
repetitions. The appropriate way to handle n repetitions of an idealized experiment is 
through an extended experiment whose sample points are n-tuples of sample points from 
the original experiment. Such an extended experiment is viewed as n trials of the original 
experiment. The notion of multiple trials of a given experiment is so common that one 
sometimes fails to distinguish between the original experiment and an extended experiment 
with multiple trials of the original experiment. 

To be more specific, given an original sample space ⌦, the sample space of an n-repetition 
model is the Cartesian product 

⌦⇥n = {(!1,!2, . . . , !n) : !i 2 ⌦ for each i, 1  i  n}, (1.15) 
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i.e., the set of all n-tuples for which each of the n components of the n-tuple is an element 
of the original sample space ⌦. Since each sample point in the n-repetition model is an 
n-tuple of points from the original ⌦, it follows that an event in the n-repetition model is 

na subset of ⌦⇥ , i.e., a collection of n-tuples (!1, . . . , !n), where each !i is a sample point 
nfrom ⌦. This class of events in ⌦⇥ should include each event of the form {(A1A2 · · · An)}, 

where {(A1A2 · · · An)} denotes the collection of n-tuples (!1, . . . , !n) where !i 2 Ai for 
1  i  n. The set of events (for n-repetitions) mult also be extended to be closed under 
complementation and countable unions and intersections. 

The simplest and most natural way of creating a probability model for this extended sample 
space and class of events is through the assumption that the n-trials are statistically inde­
pendent. More precisely, we assume that for each extended event {(A1A2 · · · An)} contained 
in ⌦⇥n, we have 

Pr{(A1A2 · · · An)} = 
Y

i

n 

=1 
Pr{Ai} , (1.16) 

where Pr{Ai} is the probability of event Ai in the original model. Note that since ⌦ can 
be substituted for any Ai in this formula, the subset condition of (1.13) is automatically 
satisfied. In other words, for any probability model, there is an extended independent n-
repetition model for which the events in each trial are independent of those in the other 
trials. In what follows, we refer to this as the probability model for n independent identically 
distributed (IID) trials of a given experiment. 

The niceties of how to create this model for n IID arbitrary experiments depend on measure 
theory, but we simply rely on the existence of such a model and the independence of events 
in di↵erent repetitions. What we have done here is very important conceptually. A proba­
bility model for an experiment does not say anything directly about repeated experiments. 
However, questions about independent repeated experiments can be handled directly within 
this extended model of n IID repetitions. This can also be extended to a countable number 
of IID trials. 

1.3.3 Random variables 

The outcome of a probabilistic experiment often specifies a collection of numerical values 
such as temperatures, voltages, numbers of arrivals or departures in various time intervals, 
etc. Each such numerical value varies, depending on the particular outcome of the experi­
ment, and thus can be viewed as a mapping from the set ⌦ of sample points to the set R of 
real numbers (note that R does not include ±1). These mappings from sample points to 
real numbers are called random variables. 

Definition 1.3.4. A random variable (rv) is essentially a function X from the sample 
space ⌦ of a probability model to the set of real numbers R. Three modifications are needed 
to make this precise. First, X might be undefined or infinite for a subset of ⌦ that has 0 
probability.12 Second, the mapping X(!) must have the property that {! 2 ⌦ : X(!)  x} 

12For example, suppose ⌦ is the closed interval [0, 1] of real numbers with a uniform probability distribution 
over [0, 1]. If X(!) = 1/!, then the sample point 0 maps to 1 but X is still regarded as a rv. These subsets 
of 0 probability are usually ignored, both by engineers and mathematicians. Thus, for example, the set 
{! 2 ⌦ : X(!)  x} means the set for which X(!) is both defined and satisfies X(!)  x. 
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is an event13 for each x 2 R. Third, every finite set of rv’s X1, . . . ,Xn has the property 
that {! : X1(!)  x1, . . . ,Xn(!)  xn} is an event for each x1 2 R, . . . , xn 2 R. 

As with any function, there is often confusion between the function itself, which is called 
X in the definition above, and the value X(!) the function takes on for a sample point !. 
This is particularly prevalent with random variables (rv’s) since we intuitively associate a 
rv with its sample value when an experiment is performed. We try to control that confusion 
here by using X, X(!), and x, respectively, to refer to the rv, the sample value taken for a 
given sample point !, and a generic sample value. 

Definition 1.3.5. The distribution function14 FX (x) of a random variable (rv) X is a 
function, R ! R, defined by FX (x) = Pr{! 2 ⌦ : X(!)  x}. The argument ! is usually 
omitted for brevity, so FX (x) = Pr{X  x}. 

Note that x is the argument of FX (x) and the subscript X denotes the particular rv under 
consideration. As illustrated in Figure 1.1, the distribution function FX (x) is nondecreasing 
with x and must satisfy the limits limx!�1 FX (x) = 0 and limx!1 FX (x) = 1. It is not 
hard to show, from the axioms, that FX (x) is continuous from the right (i.e., that for every 
x 2 R, limk!1 FX (x + 1/k) = FX (x). 

q q 
1 

0 

FX (x) 

Figure 1.1: Example of a distribution function for a rv that is neither continuous nor 
discrete. If FX (x) has a discontinuity at some xo, it means that there is a discrete 
probability at xo equal to the magnitude of the discontinuity. In this case FX (xo) is 
given by the height of the upper point at the discontinuity. 

Because of the definition of a rv, the set {X  x} for any rv X and any real number x must 
be an event, and thus Pr{X  x} must be defined for all real x. 

The concept of a rv is often extended to complex random variables (rv’s) and vector rv’s. 
A complex random variable is a mapping from the sample space to the set of finite complex 
numbers, and a vector random variable (rv) is a mapping from the sample space to the 
finite vectors in some finite dimensional vector space. Another extension is that of defective 
rvs. X is defective if there is an event of positive probability for which the mapping is 
either undefined or defined to be either +1 or �1. When we refer to random variables in 
this text (without any modifier such as complex, vector, or defective), we explicitly restrict 
attention to the original definition, i.e., a function from ⌦ to R. 

13These last two modifications are technical limitations connected with measure theory. They can usually 
be ignored, since they are satisfied in all but the most bizarre conditions. However, just as it is important 
to know that not all subsets in a probability space are events, one should know that not all functions from 
⌦ to R are rv’s. 

14The distribution function is sometimes referred to as the cumulative distribution function. 
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If X has only a finite or countable number of possible sample values, say x1, x2, . . . , the 
probability Pr{X = xi} of each sample value xi is called the probability mass function 
(PMF) at xi and denoted by pX (xi); such a random variable is called discrete. The dis­
tribution function of a discrete rv is a ‘staircase function,’ staying constant between the 
possible sample values and having a jump of magnitude pX (xi) at each sample value xi. 
Thus the PMF and the distribution function each specify the other for discrete rv’s. 

If the distribution function FX (x) of a rv X has a (finite) derivative at x, the derivative 
is called the probability density (or the density) of X at x and denoted by fX (x); for 
su�ciently small �, �fX (x) then approximates the probability that X is mapped to a value 
between x and x + �. If the density exists for all x, the rv is said to be continuous. More 
generally, if there is a function fX (x) such that, for each x 2 R, the distribution function 

xsatisfies 
R

fX (y) dy, then the rv is said to be continuous and fX is the probability density. �1
This generalization allows the density to be discontinuous. In other words, a continuous 
rv requires a little more than a continuous distribution function and a little less than a 
continuous density. 

Elementary probability courses work primarily with the PMF and the density, since they are 
convenient for computational exercises. We will often work with the distribution function 
here. This is partly because it is always defined, partly to avoid saying everything thrice, for 
discrete, continuous, and other rv’s, and partly because the distribution function is often 
most important in limiting arguments such as steady-state time-average arguments. For 
distribution functions, density functions, and PMF’s, the subscript denoting the rv is often 
omitted if the rv is clear from the context. The same convention is used for complex rv’s 
and vector rv’s. 

Appendix A lists the PMF’s of a number of widely used discrete rv’s and the densities of 
some equally popular continuous rv’s. The mean, variance and moment generating functions 
of these variables are also listed for ready reference. 

1.3.4 Multiple random variables and conditional probabilities 

Often we must deal with multiple random variables (rv’s) in a single probability experiment. 
If X1,X2, . . . ,Xn are rv’s or the components of a vector rv, their joint distribution function 
is defined by 

FX1 Xn (x1, x2, . . . , xn) = Pr{! 2 ⌦ : X1(!)  x1,X2(!)  x2, . . . ,Xn(!)  xn} . (1.17)···

This definition goes a long way toward explaining why we need the notion of a sample space 
⌦ when all we want to talk about is a set of rv’s. The distribution function of a rv fully 
describes the individual behavior of that rv, but ⌦ and the above mappings are needed to 
describe how the rv’s interact. 

For a vector rv X with components X1, . . . ,Xn, or a complex rv X with real and imaginary 
parts X1,X2, the distribution function is also defined by (1.17). Note that {X1  x1,X2  
x2, . . . ,Xn  xn} is an event and the corresponding probability is nondecreasing in each 
argument xi. Also the distribution function of any subset of random variables is obtained 
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by setting the other arguments to +1. For example, the distribution of a single rv (called 
a marginal distribution) is given by 

FXi (xi) = FX1···Xi�1XiXi+1··· (1, . . . , 1, xi, 1, . . . , 1).Xn 

If the rv’s are all discrete, there is a joint PMF which specifies and is specified by the joint 
distribution function. It is given by 

pX1...Xn (x1, . . . , xn) = Pr{X1 = x1, . . . ,Xn = xn} . 

Similarly, if the joint distribution function is di↵erentiable everywhere, it specifies and is 
specified by the joint probability density, 

fX1...Xn (x1, . . . , xn) = 
@nF(x1, . . . , xn) 

. 
@x1@x2 · · · @xn 

. 

Two rv’s, say X and Y , are statistically independent (or, more briefly, independent) if 

FXY (x, y) = FX (x)FY (y) for each x 2 R, y 2 R. (1.18) 

If X and Y are discrete rv’s then the definition of independence in (1.18) is equivalent to 
the corresponding statement for PMF’s, 

pXY (xiyj ) = pX (xi)pY (yj ) for each value xi of X and yj of Y. 

Since {X = xi} and {Y = yj } are events, the conditional probability of {X = xi} conditional 
on {Y = yj } (assuming pY (yj ) > 0) is given by (1.12) to be 

pX|Y (xi yj ) = 
pXY (xi, yj) .| 

pY (yj) 

If pX|Y (xi | yj) = pX (xi) for all i, j, then it is seen that X and Y are independent. This 
captures the intuitive notion of independence better than (1.18) for discrete rv’s , since it 
can be viewed as saying that the PMF of X is not a↵ected by the sample value of Y . 

If X and Y have a joint density, then (1.18) is equivalent to 

fXY (x, y) = fX (x)fY (y) for each x 2 R, y 2 R. 

If fY (y) > 0, the conditional density can be defined as fX|Y (x | y) = fXY (x,y) . ThenfY (y)
statistical independence can be expressed as 

fX|Y (x|y) = fX (x) where fY (y) > 0. (1.19) 

This captures the intuitive notion of statistical independence for continuous rv’s better than 
(1.18), but it does not quite say that the density of X, conditional on Y = y is the same 
as the marginal density of X. The event {Y = y} has zero probability for a continuous rv, 
and we cannot condition on events of zero probability. If we look at the derivatives defining 
these densities, the conditional density looks at the probability that {x  X  x + �} given 

mailto:@nF(x1,..
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that {y  Y  y + ✏} in the limit �, ✏ ! 0. At some level, this is a very technical point and 
the intuition of conditioning on {Y =y} works very well. Furthermore, problems are often 
directly modeled in terms of conditional probability densities, so that viewing a conditional 
density as a limit is less relevant. 

More generally the probability of an arbitrary event A conditional on a given value of a 
continuous rv Y is given by 

Pr{A Y = y} = lim 
Pr{A,Y 2 [y, y + �]}

.| 
�!0 Pr{Y 2 [y, y + �]} 

We next generalize the above results about two rv’s to the case of n rv’s X = X1, . . . ,Xn. 
Statistical independence is then defined by the equation 

FX (x1, . . . , xn) = 
Yn 

Pr{Xi  xi} = 
Yn 

FXi (xi) for all values of x1, . . . , xn. 
i=1 i=1 

(1.20) 

In other words, X1, . . . ,Xn are independent if the events Xi  xi for 1  i  n are 
independent for all choices of x1, . . . , xn. If the density or PMF exists, (1.20) is equivalent 
to a product form for the density or mass function. A set of rv’s is said to be pairwise 
independent if each pair of rv’s in the set is independent. As shown in Exercise 1.20, 
pairwise independence does not imply that the entire set is independent. 

Independent rv’s are very often also identically distributed, i.e., they all have the same 
distribution function. These cases arise so often that we abbreviate independent identically 
distributed by IID. For the IID case (1.20) becomes 

FX (x1, . . . , xn) = 
Yn 

FX (xi). (1.21)
i=1 

1.3.5 Stochastic processes and the Bernoulli process 

A stochastic process (or random process15) is an infinite collection of rv’s, usually indexed 
by an integer or a real number often interpreted as time.16 Thus each sample point of the 
probability model maps to an infinite collection of sample values of rv’s. If the index is 
regarded as time, then each sample point maps to a function of time called a sample path 
or sample function. These sample paths might vary continuously with time or might vary 
only at discrete times, and if they vary at discrete times, those times might be deterministic 
or random. 

In many cases, this collection of rv’s comprising the stochastic process is the only thing of 
interest. In this case the sample points of the probability model can be taken to be the 

15Stochastic and random are synonyms, but random has become more popular for rv’s and stochastic 
for stochastic processes. The reason for the author’s choice is that the common-sense intuition associated 
with randomness appears more important than mathematical precision in reasoning about rv’s, whereas for 
stochastic processes, common-sense intuition causes confusion much more frequently than with rv’s. The 
less familiar word stochastic warns the reader to be more careful. 

16This definition is deliberately vague, and the choice of whether to call a sequence of rv’s a process or a 
sequence is a matter of custom and choice. 
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sample paths of the process. Conceptually, then, each event is a collection of sample paths. 
Often these events are defined in terms of a finite set of rv’s. 

As an example of sample paths that vary at only discrete times, we might be concerned with 
the times at which customers arrive at some facility. These ‘customers’ might be customers 
entering a store, incoming jobs for a computer system, arriving packets to a communication 
system, or orders for a merchandising warehouse. 

The Bernoulli process is an example of how such customers could be modeled and is perhaps 
the simplest non-trivial stochastic process. We define this process here and develop a few 
of its many properties. We will frequently return to it, both to use it as an example and to 
develop additional properties. 

Example 1.3.1. A Bernoulli process is a sequence, Y1, Y2, . . . , of IID binary random vari­
ables.17 Let p = Pr{Yi = 1} and 1 � p = Pr{Yi = 0}. We usually visualize a Bernoulli 
process as evolving in discrete time with the event {Yi = 1} representing an arriving cus­
tomer at time i and {Yi = 0} representing no arrival. Thus at most one arrival occurs at 
each integer time. We visualize the process as starting at time 0, with the first opportunity 
for an arrival at time 1. 

When viewed as arrivals in time, it is interesting to understand something about the intervals 
between successive arrivals, and about the aggregate number of arrivals up to any given time 
(see Figure 1.2). These interarrival times and aggregate numbers of arrivals are rv’s that 
are functions of the underlying sequence Y1, Y2, . . . ,. The topic of rv’s that are defined as 
functions of other rv’s (i.e., whose sample values are functions of the sample values of the 
other rv’s) is taken up in more generality in Section 1.3.7, but the interarrival times and 
aggregate arrivals for Bernoulli processes are so specialized and simple that it is better to 
treat them from first principles. 

First, consider the first interarrival time, X1, which is defined as the time of the first arrival. 
If Y1 = 1, then (and only then) X1 = 1. Thus pX1 (1) = p. Next, X1 = 2 if and only Y1 = 0 
and Y2 = 1, so pX1 (2) = pq. Continuing, we see that X1 has the geometric PMF, 

pX1 (j) = p(1 � p)j�1 . 

Each subsequent interarrival time Xk can be found in this same way.18 It has the same 
geometric PMF and is statistically independent of X1, . . . ,Xk�1. Thus the sequence of 
interarrival times is an IID sequence of geometric rv’s. 

It can be seen from Figure 1.2 that a sample path of interarrival times also determines a 
sample path of the binary arrival rv’s, {Yi; i � 1}. Thus the Bernoulli process can also be 
characterized as a sequence of IID geometric rv’s. 

For our present purposes, the most important rv’s in a Bernoulli process are the partial 
sums Sn = 

Pn Yi. Each rv Sn is the number of arrivals up to and includng time n, i.e.,i=1 

17We say that a sequence Y1, Y2, . . . , of rv’s are IID if for each integer n, the rv’s Y1, . . . , Yn are IID. 
There are some subtleties in going to the limit n ! 1, but we can avoid most such subtleties by working 
with finite n-tuples and going to the limit at the end. 

18This is one of those maddening arguments that, while intuitively obvious, requires some careful reasoning 
to be completely convincing. We go through several similar arguments with great care in Chapter 2, and 
suggest that skeptical readers wait until then to prove this rigorously. 
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Figure 1.2: Illustration of a sample path for a Bernoulli process: The sample values of 
the binary rv’s Yi are shown below the time instants. The sample value of the aggregate 
number of arrivals, Sn = 

Pn Yi, is the illustrated step function, and the interarrival i=1 
intervals are the intervals between steps. 

Sn is simply the sum of n binary rv’s and thus has the binomial distribution. The PMF 
n!pSn (k) is the probability that k out of n of the Yi’s have the value 1. There are 

�n
k

� 
= k!(n�k)! 

arrangements of n binary numbers with k 1’s, and each has probability pkqn�k . Thus 

kpSn (k) = 

✓
n
◆

p q n�k . (1.22)
k 

We will use the binomial PMF extensively as an example in explaining the laws of large 
numbers later in this chapter, and will often use it in later chapters as an example of a 
sum of IID rv’s. For these examples, we need to know how pSn (k) behaves asymptotically 
as n ! 1 and k ! 1 with k/n essentially constant. The relative frequency k/n will be 
denoted as p̃. We make a short digression here to state and develop an approximation to 
the binomial PMF that makes this asymptotic behavior clear. 

Lemma 1.3.1. Let pSn (p̃n) be the PMF of the binomial distribution for an underlying 
binary PMF pY (1) = p > 0, pY (0) = q > 0. pn, 1  ˜Then for each integer ˜ pn  n � 1, 

s 
1 

pSn (p̃n)) < 
2⇡np̃(1�p̃) 

exp 
⇥
n�(p, p̃)

⇤ 
where (1.23) 

p
�(p, p̃) = p̃ ln( ) + (1 � p̃) ln(

1 � p 
(1.24) 

p̃ 1 � p̃
)  0. 

Also, �(p, p̃) < 0 for all p̃ 6= p . Finally, for any ✏ > 0, there is an n(✏) such that for 
n > n(✏), 

pSn (p̃n) > 

✓
1 � p1 

n 

◆s 
2⇡np̃

1
(1�p̃) 

exp 
⇥
n�(p, p̃)

⇤ 
for ✏  p̃  1 � ✏ (1.25) 

Discussion: The parameter p̃ = k/n is the relative frequency of 1’s in the n-tuple Y1, . . . , Yn. 
For each n, p̃ on the left of (1.23) is restricted so that p̃n is an integer. The lemma then says 
that pSn (p̃n) is upper bounded by an exponentially decreasing function of n for each p̃ =6 p. 



18 CHAPTER 1. INTRODUCTION AND REVIEW OF PROBABILITY 

If p̃ is bounded away from 0 and 1, the ratio of the upper and lower bounds on pSn (p̃n) 
approaches 1 as n !1. A bound that is asymptotically tight in this way is denoted as s 

1 
pSn (p̃n)) ⇠ 

2⇡np̃(1�p̃) 
exp 

⇥
n�(p, p̃)

⇤ 
for ✏ < ˜ (1.26)p < 1 � ✏ 

where the symbol ⇠ means that the ratio of the left and right side approach 1 as n !1 

Proof*:19 The factorial of any positive integer n is bounded by the Stirling bounds,20 

p
2⇡n 

⇣n⌘n 
< n! < 

p
2⇡n 

⇣n⌘n 
e 1/12n . (1.27) 

e e 

The ratio 
p

2⇡n(n/e)n/n! is monotonically increasing with n toward the limit 1, and the 
ratio 

p
2⇡n(n/e)n exp(1/12n)/n! is monotonically decreasing toward 1. The upper bound 

is more accurate, but the lower bound is simpler and known as the Stirling approximation. 

Since 
p

2⇡n(n/e)n/n! is increasing in n, we see that n!/k! < 
p

n/k nnk�ke�n+k for k < n. 
Combining this with (1.27) applied to n � k, 

nn n
✓

n
◆ 

< 
r 

. (1.28)
k 2⇡k(n � k) kk(n�k)n�k 

Using (1.28) in (1.22) to upper bound pSn (k), 

pSn (k) < 
r 

n pkqn�knn 

.
2⇡k(n � k) kk(n�k)n�k 

Replacing k by p̃n, we get (1.23) where �(p, p̃) is given by (1.24). Applying the same 
argument to the right hand inequality in (1.27), 

nn n 1 1
✓

n

k 

◆ 
> 

r
2⇡k(n � k) kk(n�k)n�k exp 

✓
�

12k 
� 

12(n � k) 

◆ 

nn n 1 
> 

r
2⇡k(n � k) kk(n�k)n�k 


1 � 

12np̃(1 � p̃) 

�
. (1.29) 

For ✏ < p̃ < 1 � ✏, the term in brackets in (1.29) is lower bounded by 1 � 1/(12n✏(1 � ✏), 
which is further lower bounded by 1 � 1/

p
n for all su�ciently large n, establishing (1.25). 

Finally, to show that �(p, p̃)  0, with strict inequality for p̃ =6 p, we take the first two 
derivatives of �(p, p̃) with respect to p̃. 

@�(p, p̃) 
= ln 

✓
p(1 � p̃)

◆ 
@f2(p, p̃) 

= 
�1 

@p̃ p̃(1 � p) @p̃2 p̃(1 � p̃)
. 

Since the second derivative is negative for 0 < ˜ p) with respect p < 1, the maximum of �(p, ˜
to p̃ is 0, achieved at p̃ = p. Thus �(p, p̃) < 0 for p̃ =6 p. Furthermore, �(p, p̃) decreases as 
p̃ moves in either direction away from p. 

Various aspects of this lemma will be discussed later with respect to each of the laws of 
large numbers. 

19Proofs with an asterisk can be omitted without an essential loss of continuity 
20See Feller [7] for a derivation of these results about the Stirling bounds. Feller also shows that that an 

improved lower bound to n! is given by 
p

2⇡n(n/e)n exp[ 12
1 
n � 

360
1 
n3 ]. 
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We have seen that the Bernoulli process can also be characterized as a sequence of IID 
geometric interarrival intervals. An interesting generalization of this arises by allowing the 
interarrival intervals to be arbitrary discrete or continuous nonnegative IID rv’s rather than 
geometric rv’s. These processes are known as renewal processes and are the topic of Chapter 
3. Poisson processes are special cases of renewal processes in which the interarrival intervals 
have an exponential PDF. These are treated in Chapter 2 and have many connections to 
Bernoulli processes. 

Renewal processes are examples of discrete stochastic processes. The distinguishing charac­
teristic of such processes is that interesting things (arrivals, departures, changes of state) 
occur at discrete instants of time separated by deterministic or random intervals. Discrete 
stochastic processes are to be distinguished from noise-like stochastic processes in which 
changes are continuously occurring and the sample paths are continuously varying func­
tions of time. The description of discrete stochastic processes above is not intended to be 
precise. The various types of stochastic processes developed in subsequent chapters are all 
discrete in the above sense, however, and we refer to these processes, somewhat loosely, as 
discrete stochastic processes. 

Discrete stochastic processes find wide and diverse applications in operations research, com­
munication, control, computer systems, management science, finance, etc. Paradoxically, 
we shall spend relatively little of our time discussing these particular applications, and 
rather develop results and insights about these processes in general. Many examples drawn 
from the above fields will be discussed, but the examples will be simple, avoiding many of 
the complications that require a comprehensive understanding of the application area itself. 

1.3.6 Expectation 

The expected value E [X] of a random variable X is also called the expectation or the mean 
and is frequently denoted as X. Before giving a general definition, we discuss several special 
cases. First consider nonnegative discrete rv’s. The expected value E [X] is then given by 

E [X] = 
X

x pX (x). (1.30) 
x 

If X has a finite number of possible sample values, the above sum must be finite since each 
sample value must be finite. On the other hand, if X has a countable number of nonnegative 
sample values, the sum in (1.30) might be either finite or infinite. Example 1.3.2 illustrates 
a case in which the sum is infinite. The expectation is said to exist only if the sum is finite 
(i.e., if the sum converges to a real number), and in this case E [X] is given by (1.30). If the 
sum is infinite, we say that E [X] does not exist, but also say21 that E [X] = 1. In other 
words, (1.30) can be used in both cases, but E [X] is said to exist only if the sum is finite. 

Example 1.3.2. This example will be useful frequently in illustrating rv’s that have an 
infinite expectation. Let N be a positive integer-valued rv with the distribution function 

21It almost seems metaphysical to say that something has the value infinity when it doesn’t exist. However, 
the word ‘exist’ here is shorthand for ‘exist as a real number,’ which makes it quite reasonable to also consider 
the value in the extended real number system, which includes ±1. 
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FN (n) = n/(n + 1) for each integer n � 1. Then N is clearly a positive rv since FN (0) = 0 
and limN!1 FN (n) = 1. For each n � 1, the PMF is given by 

pN (n) = FN (n) � FN (n � 1) = 
n n � 1 

= 
1 

(1.31) 
n + 1 

� 
n n(n + 1)

. 

Since pN (n) is a PMF, we see that 
P1 1/[n(n + 1)] = 1, which is a frequently useful sum. n=1 

The following equation, however, shows that E [N ] does not exist and has infinite value. 

1 1
n 

1 1 
E [N ] = 

X
n pN (n) = 

X 
n(n + 1) 

= 
X 

n + 1 
= 1, 

n=1 n=1 n=1 

where we have used the fact that the harmonic series diverges. 

We next derive an alternative expression for the expected value of a nonnegative discrete rv. 
This new expression is given directly in terms of the distribution function. We then use this 
new expression as a general definition of expectation which applies to all nonnegative rv’s, 
whether discrete, continuous, or arbitrary. It contains none of the convergence questions 
that could cause confusion for arbitrary rv’s or for continuous rv’s with very wild densities. 

a4pX (a4) 

a3pX (a3) 

a2pX (a2) 

a1pX (a1) 

pX (a4) 

pX (a3) 

pX (a2) 

pX (a1) 

a1 

a2 

a3 

a4 

Fc 
X (x) 

s 
s 

s s 
Figure 1.3: The figure shows the complementary distribution function Fc of a non-X 
negative discrete rv X. For this example, X takes on four possible values, 0 < a1 < 
a2 < a3 < a4. Thus Fc (x) = Pr{X > x} = 1 for x < a1. For a1 x < a2,X 
Pr{X > x} = 1 � pX (a1), and Pr{X > x} has similar drops as x reaches 

 
a2, a3, and 

a4. E [X], from (1.30), is 
P

i aipX (ai), which is the sum of the rectangles in the figure. 
This is also the area under the curve Fc (x), i.e., 

R
0
1

Fc (x) dx. It can be seen that this X X 
argument applies to any nonnegative rv, thus verifying (1.32). 

For a nonnegative discrete rv X, Figure 1.3 illustrates that (1.30) is simply the integral of 
the complementary distribution function, where the complementary distribution function 
Fc of a rv is defined as Fc (x) = Pr{X > x} = 1 � FX (x).X 

E [X] = 
Z 1 

Fc 
X dx = 

Z 1 

Pr{X > x} dx. (1.32) 
0 0 

Although Figure 1.3 only illustrates the equality of (1.30) and (1.32) for one special case, one 
easily sees that the argument applies to any nonnegative discrete rv, including those with 
countably many values, by equating the sum of the indicated rectangles with the integral. 
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For a continuous nonnegative rv X, the conventional definition of expectation is given by 

Z b 

E [X] = lim xfX (x) dx. (1.33) 
0b!1 

Suppose the integral is viewed as a limit of Riemann sums. Each Riemann sum can be viewed 
as the expectation of a discrete approximation to the continuous rv. The corresponding 
expectation of the approximation is given by (1.32) using the approximate FX . Thus (1.32), 
using the true FX , yields the expected value of X. This can also be seen using integration 
by parts. There are no mathematical subtleties in integrating an arbitrary nonnegative 
nonincreasing function, and this integral must have either a finite or infinite limit. This 
leads us to the following fundamental definition of expectation for nonnegative rv’s: 

Definition 1.3.6. The expectation E [X] of a nonnegative rv X is defined by (1.32). The 
expectation is said to exist if and only if the integral is finite. Otherwise the expectation is 
said to not exist and is also said to be infinite. 

Next consider rv’s with both positive and negative sample values. If X has a finite number 
of positive and negative sample values, say a1, a2, . . . , an the expectation E [X] is given by 

E [X] = 
X

aipX (ai) 
i 

= 
X 

ai pX (ai) + 
X 

ai pX (ai). (1.34) 
ai0 ai>0 

If X has a countably infinite set of sample values, then (1.34) can still be used if each of 
the sums in (1.34) converges to a finite value, and otherwise the expectation does not exist 
(as a real number). It can be seen that each sum in (1.34) converges to a finite value if and 
only if E [|X|] exists (i.e., converges to a finite value) for the nonnegative rv |X|. 

If E [X] does not exist (as a real number), it still might have the value 1 if the first sum 
converges and the second does not, or the value �1 if the second sum converges and the 
first does not. If both sums diverge, then E [X] is undefined, even as an extended real 
number. In this latter case, the partial sums can be arbitrarily small or large depending on 
the order in which the terms of (1.34) are summed (see Exercise 1.7). 

As illustrated for a finite number of sample values in Figure 1.4, the expression in (1.34) 
can also be expressed directly in terms of the distribution function and complementary 
distribution function as 

FcE [X] = � 
Z 0 

FX (x) dx + 
Z 1 

(x) dx. (1.35)X 
�1 0 

Since Fc (x) = 1 � FX (x), this can also be expressed as X 

E [X] = 
Z 1 ⇥

u(x) � FX (x)
⇤
dx 

�1 

where u(x) is the unit step, u(x) = 1 for x � 0 and u(x) = 0 otherwise. 
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a4pX (a4) 

a3pX (a3)�a2pX (a2) 

�a1pX (a1) 
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a2 

a3 

a4 

Fc 
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FX (x) 
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Figure 1.4: For this example, X takes on four possible sample values, a1 < a2 < 0 < 
The figure plots FX (x) for x  0 and F

(x) dx = a3fX (a3)+a4fX (a4). Similarly, 
R

x<0 

a3 < a4. 
F

R
x�0 

c 

c (x) for x > 0. As in Figure 1.3,
X 
FX (x) dx = �a1fX (a1)�a2fX (a2).X 

The first integral in (1.35) corresponds to the negative sample values and the second to the 
positive sample values, and E [X] exists if and only if both integrals are finite (i.e., if E [|X|] 
is finite. 

For continuous valued rv’s with positive and negative sample values, the conventional defi­
nition of expectation (assuming that E [|X|] exists) is given by 

E [X] = 
Z 1 

x fX (x) dx. (1.36) 
�1 

This is equal to (1.35) by the same argument as with nonnegative rv’s. Also, as with non­
negative rv’s, (1.35) also applies to arbitrary rv’s. We thus have the following fundamental 
definition of expectation: 

Definition 1.3.7. The expectation E [X] of a rv X exists, with the value given in (1.35), 
if each of the two terms in (1.35) is finite. The expectation does not exist, but has value 1
(�1), if the first term is finite (infinite) and the second infinite (finite). The expectation 
does not exist and is undefined if both terms are infinite. 

We should not view the general expression in (1.35) for expectation as replacing the need 
for the conventional expressions in (1.36) and (1.34) for continuous and discrete rv’s respec­
tively. We will use all of these expressions frequently, using whichever is most convenient. 
The main advantages of (1.35) are that it applies equally to all rv’s and that it poses no 
questions about convergence. 

Example 1.3.3. The Cauchy rv X is the classic example of a rv whose expectation does 
not exist and is undefined. The probability density is fX (x) = ⇡(1+

1 
x2) . Thus xfX (x) is 

proportional to 1/x both as x ! 1 and as x ! �1. It follows that 
R1 xfX (x) dx and0R 0 On the other hand, we see from symmetry that the �1 �xfX (x) dx are both infinite. 

Cauchy principal value of the integral in (1.36) is given by 

Z A x
lim dx = 0. 

A!1 �A ⇡(1 + x)2 

There is usually little motivation for considering the upper and lower limits of the integration 
to have the same magnitude, and the Cauchy principal value usually has little significance 
for expectations. 
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1.3.7 Random variables as functions of other random variables 

Random variables (rv’s) are often defined in terms of each other. For example, if h is a 
function from R to R and X is a rv, then Y = h(X) is the random variable that maps each 
sample point ! to the composite function h(X(!)). The distribution function of Y can be 
found from this, and the expected value of Y can then be evaluated by (1.35). 

It is often more convenient to find E [Y ] directly using the distribution function of X. 
Exercise 1.16 indicates that E [Y ] is given by 

R 
h(x)fX (x) dx for continuous rv’s and by 

h(x)pX (x) for discrete rv’s. In order to avoid continuing to use separate expressions for 
P

x 
continuous and discrete rv’s, we express both of these relations by 

E [Y ] = 
Z 1 

h(x) dFX (x), (1.37) 
�1 

This is known as a Stieltjes integral, which can be used as a generalization of both the 
continuous and discrete cases. For most purposes, we use Stieltjes integrals22 as a notational 
shorthand for either 

R 
h(x)fX (x) dx or 

P
x h(x)pX (x). 

Knowing that E [X] exists does not guarantee that E [Y ] exists, but we will treat the question 
of existence as it arises rather than attempting to establish any general rules. 

Particularly important examples of such expected values are the moments E [Xn] of a rv 
X and the central moments E 

⇥
(X � X)n

⇤ 
of X, where X is the mean E [X]. The second 

central moment is called the variance, denoted by �2 or VAR [X]. It is given by X 

�2 2 
X = E 

⇥
(X � X)2

⇤ 
= E 

⇥
X2

⇤
� X . (1.38) 

The standard deviation �X of X is the square root of the variance and provides a measure 
of dispersion of the rv around the mean. Thus the mean is a rough measure of typical 
values for the outcome of the rv, and �X is a measure of the typical di↵erence between X 
and X. There are other measures of typical value (such as the median and the mode) and 
other measures of dispersion, but mean and standard deviation have a number of special 
properties that make them important. One of these (see Exercise 1.21) is that E 

⇥
(X � a)2

⇤ 
is minimized over ↵ when ↵ = E [X]. 

Next suppose X and Y are rv’s and consider the rv23 Z = X + Y . If we assume that X 

22 More specifically, the Riemann-Stieltjes integral, abbreviated here as the Stieltjes integral, is denoted as R b h(x)dFX (x). This integral is defined as the limit of a generalized Riemann sum, lim�!0 
P

n h(xn)[F(yn)�
a 

F(yn�1)] where {yn; n � 1} is a sequence of increasing numbers from a to b satisfying yn � yn�1  � and 
yn�1 < xn  yn for all n. The Stieltjes integral exists over finite limits if the limit exists and is independent 
of the choices of {yn} and {xn} as � ! 0. It exists over infinite limits if it exists over finite lengths and 
a limit over the integration limits can be taken. See Rudin [18] for an excellent elementary treatment of 
Stieltjes integration, and see Exercise 1.12 for some examples. 

23The question whether a real-valued function of rv’s is itself a rv is usually addressed by the use of 
measure theory, and since we neither use nor develop measure theary in this text, we usually simply assume 
(within the limits of common sense) that any such function is itself a rv. However, the sum X + Y of rv’s 
is so important throughout this subject that Exercise 1.10 provides a guided derivation of this result for 
X + Y . In the same way, the sum Sn = X1 + + Xn of any finite collection of rv’s is also a rv. · · · 
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and Y are independent, then the distribution function of Z = X + Y is given by24 

FZ (z) = 
Z 1 

FX (z � y) dFY (y) = 
Z 1 

FY (z � x) dFX (x). (1.39) 
�1 �1 

If X and Y both have densities, this can be rewritten as 

fZ (z) = 
Z 1 

fX (z � y)fY (y) dy = 
Z 1 

fY (z � x)fX (x) dx. (1.40) 
�1 �1 

Eq. (1.40) is the familiar convolution equation from linear systems, and we similarly refer 
to (1.39) as the convolution of distribution functions (although it has a di↵erent functional 
form from (1.40)). If X and Y are nonnegative random variables, then the integrands in 
(1.39) and (1.40) are non-zero only between 0 and z, so we often use 0 and z as the limits 
in (1.39) and (1.40). 

If X1,X2, . . . ,Xn are independent rv’s, then the distribution of the rv Sn = X1 + X2 + +· · · 
Xn can be found by first convolving the distributions of X1 and X2 to get the distribution 
of S2 and then, for each i � 2, convolving the distribution of Si and Xi+1 to get the 
distribution of Si+1. The distributions can be convolved in any order to get the same 
resulting distribution. 

Whether or not X1,X2, . . . ,Xn are independent, the expected value of Sn = X1 + X2 + 
+ Xn satisfies· · · 

E [Sn] = E [X1 + X2 + + Xn] = E [X1] + E [X2] + + E [Xn] . (1.41)· · · · · · 

This says that the expected value of a sum is equal to the sum of the expected values, 
whether or not the rv’s are independent (see exercise 1.11). The following example shows 
how this can be a valuable problem solving aid with an appropriate choice of rv’s. 

Example 1.3.4. Consider a switch with n input nodes and n output nodes. Suppose each 
input is randomly connected to a single output in such a way that each output is also 
connected to a single input. That is, each output is connected to input 1 with probability 
1/n. Given this connection, each of the remaining outputs are connected to input 2 with 
probability 1/(n � 1), and so forth. 

An input node is said to be matched if it is connected to the output of the same number. 
We want to show that the expected number of matches (for any given n) is 1. Note that 
the first node is matched with probability 1/n, and therefore the expectation of a match 
for node 1 is 1/n. Whether or not the second input node is matched depends on the choice 
of output for the first input node, but it can be seen from symmetry that the marginal 
distribution for the output node connected to input 2 is 1/n for each output. Thus the 
expectation of a match for node 2 is also 1/n. In the same way, the expectation of a match 
for each input node is 1/n. From (1.41), the expected total number of matchs is the sum 
over the expected number for each input, and is thus equal to 1. This exercise would be 
quite di�cult without the use of (1.41). 

24See Exercise 1.12 for some peculiarties about this definition. 
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If the rv’s X1, . . . ,Xn are independent, then, as shown in exercises 1.11 and 1.18, the 
variance of Sn = X1 + + Xn is given by · · · 

�2 = 
Xn 

�2 . (1.42)Sn i=1 Xi 

If X1, . . . ,Xn are also identically distributed (i.e., X1, . . . ,Xn are IID) with variance �2 
X , 

then �S
2 

n 
= X . Thus the standard deviation of Sn is �Sn = 

p
n�X . Sums of IID rv’s n�2 

appear everywhere in probability theory and play an especially central role in the laws of 
large numbers. It is important to remember that the mean of Sn is linear in n but the 
standard deviation increases only with the square root of n. Figure 1.5 illustrates this 
behavior. 
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Figure 1.5: The distribution function FSn (s) of Sn = X1 + + Xn where X1, . . . ,Xn· · · 
are typical IID rv’s and n takes the values 4, 20, and 50. The particular rv in the figure 
is binary with pX (1) = 1/4, pX (0) = 3/4. Note that the mean of Sn is proportional to 
n and the standard deviation to 

p
n. 

1.3.8 Conditional expectations 

Just as the conditional distribution of one rv conditioned on a sample value of another rv 
is important, the conditional expectation of one rv based on the sample value of another is 
equally important. Initially let X be a positive discrete rv and let y be a sample value of 
another discrete rv Y such that pY (y) > 0. Then the conditional expectation of X given 
Y = y is defined to be 

E [X Y =y] = 
X

x pX|Y (x y). (1.43)| 
x 

| 

This is simply the ordinary expected value of X using the conditional probabilities in the 
reduced sample space corresponding to Y = y. This value can be finite or infinite as before. 
More generally, if X can take on positive or negative values, then there is the possibility that 
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the conditional expectation is undefined. In other words, for discrete rv’s, the conditional 
expectation is exactly the same as the ordinary expectation, except that it is taken using 
conditional probabilities over the reduced sample space. 

More generally yet, let X be an arbitrary rv and let y be a sample value of a discrete rv Y 
with pY (y) > 0. The conditional distribution function of X conditional on Y = y is defined 
as 

FX Y (x y) = 
Pr{X  x, Y = y}

.| | 
Pr{Y = y}

Since this is an ordinary distribution function in the reduced sample space where Y = y, 
(1.35) expresses the expectation of X conditional on Y = y as 

E [X | Y = y] = � 
Z 0 

FX|Y (x | y) dx + 
Z 

0 

1 

FX|Y (x | y) dx. (1.44) 
�1 

The forms of conditional expectation in (1.43) and (1.44) are given for individual sample 
values of Y for which pY (y) > 0. 

We next show that the conditional expectation of X conditional on a discrete rv Y can also 
be viewed as a rv. With the possible exception of a set of zero probability, each ! 2 ⌦ maps 
to {Y = y} for some y with pY (y) > 0 and E [X | Y = y] is defined for that y. Thus we can 
define E [X | Y ] as25 a rv that is a function of Y , mapping ! to a sample value, say y of Y , 
and mapping that y to E [X | Y = y]. Regarding a conditional expectation as a rv that is a 
function of the conditioning rv is a powerful tool both in problem solving and in advanced 
work. For now, we use this to express the unconditional mean of X as 

E [X] = E
⇥
E [X | Y ] 

⇤
, (1.45) 

where the inner expectation is over X for each value of Y and the outer expectation is over 
the rv E [X | Y ], which is a function of Y . 

Example 1.3.5. Consider rolling two dice, say a red die and a black die. Let X1 be the 
number on the top face of the red die, and X2 that for the black die. Let S = X1 + X2. 
Thus X1 and X2 are IID integer rv’s, each uniformly distributed from 1 to 6. Conditional 
on S = j, X1 is uniformly distributed between 1 and j � 1 for j  7 and between j � 6 
and 6 for j � 7. For each j  7, it follows that E [X1 | S = j] = j/2. Similarly, for j � 7, 
E [X1 | S = j] = j/2. This can also be seen by the symmetry between X1 and X2. 

The rv E [X1 S] is thus a discrete rv taking on values from 1 to 6 in steps of 1/2 as the 
sample value of 

| 
S goes from 2 to 12. The PMF of E [X1 | S] is given by pE[X1|S](j/2) = pS(j). 

Using (1.45), we can then calculate E [X1] as 
12

E [X1] = E
⇥
E [X1 | S] 

⇤ 
= 
X 

2 
j 

pS (j) = 
E 

2
[S] 

= 
2
7 
. 

j=2 

This example is not intended to show the value of (1.45) in calculating expectation, since 
E [X1] = 7/2 is initially obvious from the uniform integer distribution of X1. The purpose 
is simply to illustrate what the rv E [X1 | S] means. 

25This assumes that E [X | Y = y] is finite for each y, which is one of the reasons that expectations are 
said to exist only if they are finite. 
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To illustrate (1.45) in a more general way, while still assuming X to be discrete, we can 
write out this expectation by using (1.43) for E [X | Y = y]. 

E [X] = E
⇥
E [X | Y ] 

⇤ 
= 
X

pY (y)E [X | Y = y] 
y 

= 
X

pY (y) 
X

x pX|Y (x|y). (1.46) 
y x 

Operationally, there is nothing very fancy in the example or in (1.45). Combining the 
sums, (1.46) simply says that E [X] = 

P
y,x x pY X (y, x). As a concept, however, viewing 

the conditional expectation E [X | Y ] as a rv based on the conditioning rv Y is often a 
useful theoretical tool. This approach is equally useful as a tool in problem solving, since 
there are many problems where it is easy to find conditional expectations, and then to 
find the total expectation by averaging over the conditioning variable. For this reason, this 
result is sometimes called either the total expectation theorem or the iterated expectation 
theorem. Exercise 1.17 illustrates the advantages of this approach, particularly where it is 
initially unclear whether or not the expectation is finite. The following cautionary example, 
however, shows that this approach can sometimes hide convergence questions and give the 
wrong answer. 

Example 1.3.6. Let Y be a geometric rv with the PMF pY (y) = 2�y for integer y � 1. 
Let X be an integer rv that, conditional on Y , is binary with equiprobable values ±2y 

given Y = y. We then see that E [X | Y = y] = 0 for all y, and thus, (1.46) indicates that 
E [X] = 0. On the other hand, it is easy to see that pX (2k) = pX (�2k) = 2�k�1 for each 
integer k � 1. Thus the expectation over positive values of X is 1 and that over negative 
values is �1. In other words, the expected value of X is undefined and (1.46) is incorrect. 

The di�culty in the above example cannot occur if X is a nonnegative rv. Then (1.46) is 
simply a sum of a countable number of nonnegative terms, and thus it either converges to 
a finite sum independent of the order of summation, or it diverges to 1, again independent 
of the order of summation. 

If X has both positive and negative components, we can separate it into X = X++X� where 
X+ = max(0,X) and X� = min(X, 0). Then (1.46) applies to X+ and �X� separately. 
If at most one is infinite, then (1.46) applies to X, and otherwise X is undefined. This is 
summarized in the following theorem: 

Theorem 1.3.1 (Total expectation). Let X and Y be discrete rv’s. If X is nonnegative, 
then E [X] = E

⇥
E [X | Y ] 

⇤ 
= 

P
y pY (y)E [X | Y = y]. If X has both positive and negative 

values, and if at most one of E [X+] and E [�X�] is infinite, then E [X] = E
⇥
E [X | Y ] 

⇤ 
= 

pY (y)E [X Y = y].
P

y | 

We have seen above that if Y is a discrete rv, then the conditional expectation E [X|Y = y] 
is little more complicated than the unconditional expectation, and this is true whether X 
is discrete, continuous, or arbitrary. If X and Y are continuous, we can essentially extend 
these results to probability densities. In particular, defining E [X | Y = y] as 

E [X Y = y] = 
Z 1 

x fX|Y (x y), (1.47)| 
�1 

| 
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we have 

E [X] = 
Z 1 

fY (y)E [X | Y =y] dy = 
Z 1 

fY (y) 
Z 1 

x fX|Y (x | y) dx dy. (1.48) 
�1 �1 �1 

We do not state this as a theorem because the details about the integration do not seem 
necessary for the places where it is useful. 

1.3.9 Indicator random variables 

For any event A, the indicator random variable of A, denoted IA, is a binary rv that has 
the value 1 for all ! 2 A and the value 0 otherwise. It then has the PMF pIA (1) = Pr{A}
and pIA (0) = 1 � Pr{A}. The corresponding distribution function FIA is then illustrated in 
Figure 1.6. It is easily seen that E [IA] = Pr{A}. 

0 

FIA
1 � Pr{A} 

1 

0 1 

Figure 1.6: The distribution function FIA of an indicator random variable IA. 

Indicator rv’s are useful because they allow us to apply the many known results about rv’s 
and particularly binary rv’s to events. For example, the laws of large numbers are expressed 
in terms of sums of rv’s, and those results all translate into results about relative frequencies 
through the use of indicator functions. 

1.3.10 Moment generating functions and other transforms 

The moment generating function (MGF) for a rv X is given by 

gX (r) = E 
⇥
e rX ⇤ = 

Z 1 

e rx dFX (x). (1.49) 
�1 

where r is a real variable. The integrand is nonnegative, and we can study where the integral 
exists (i.e., where it is finite) by separating it as follows: 

gX (r) = 
Z 1 

e rx dFX (x) + 
Z 0 

e rx dFX (x). (1.50) 
0 �1 

Both integrals exist for r = 0, since the first is Pr{X > 0} and the second is Pr{X  0}. 
The first integral is increasing in r, and thus if it exists for one value of r, it also exists 
for all smaller values. For example, if X is a nonnegative exponential rv with the density 
fX (x) = e�x, then the first integral exists if and only r < 1, where it has the value 1�

1 
r . As 

another example, if X satisfies Pr{X > A} = 0 for some finite A, then the first integral is 
at most erA, which is finite for all real r. 
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Let r+(X) be the supremum of values of r for which the first integral exists. The first 
integral exists for all r < r+(X), and 0  r+(X)  1. In the same way, let r�(X) be the 
infimum of values of r for which the the second integral exists. The second integral exists 
for all r > r�(X) and r�(X) satisfies 0 � r�(X) � �1. 

Combining the two integrals, the region over which the MGF of an arbitrary rv exists is an 
interval I(X) from r�(X)  0 to r+(X) � 0. Either or both of the end points, r�(X) and 
r+(X), might be included in I(X), and either or both might be either 0 or infinite. We 
denote these quantities as I, r , and r+ when the rv X is clear from the context. Appendix 
A gives the interval I for for a number of standard rv’s and Exercise 1.22 illustrates I(X) 
further. 

If gX (r) exists in an open region of r around 0 (i.e., if r� < 0 < r+), then derivatives26 of 
all orders exist in that region. They are given by 

@kgX (r) = 
Z 1 

x k e rxdFX (x) ; 
@kgX (r)

����� = E 
h
Xk

i
. (1.51)

@rk @rk 
r=0�1 

This shows that finding the moment generating function often provides a convenient way 
to calculate the moments of a random variable. If any moment fails to exist, however, then 
the MGF must also fail to exist over each open interval containing 0 (see Exercise 1.31). 

Another convenient feature of moment generating functions is their use in treating sums of 
independent rv’s. For example, let Sn = X1 + X2 + + Xn. Then· · · 

gSn (r) = E 
⇥
e rSn 

⇤ 
= E 

h
exp 

⇣Xn 
rXi

⌘i 
= E 

hYn 
exp(rXi)

i 
= 
Yn 

gXi (r). (1.52)
i=1 i=1 i=1 

In the last step here, we have used a result of Exercise 1.11, which shows that for independent 
rv’s, the mean of the product is equal to the product of the means. If X1, . . . ,Xn are also 
IID, then 

gSn (r) = [gX (r)]n . (1.53) 

We will use this property frequently in treating sums of IID rv’s. Note that this also implies 
that the region over which the MGF’s of Sn and X exist are the same, i.e., I(Sn) = I(X). 

The real variable r in the MGF can also be viewed as a complex variable, giving rise to a 
number of other transforms. A particularly important case is to view r as a pure imaginary 
variable, say i! where i = 

p
�1 and ! is real. The MGF is then called the characteristic 

function. Since |ei!x| is 1 for all x, gX (i!) exists for all rv’s X and all real !, and its 
magnitude is at most one. Note that gX (�i!) is the Fourier transform of the density of 
X, so the Fourier transform and characteristic function are the same except for this small 
notational di↵erence. 

rThe Z-transform is the result of replacing e with z in gX (r). This is useful primarily 
for integer valued rv’s, but if one transform can be evaluated, the other can be found 

26This result depends on interchanging the order of di↵erentiation (with respect to r) and integration 
(with respect to x). This can be shown to be permissible because gX (r) exists for r both greater and smaller 
than 0, which in turn implies, first, that 1 � FX (x) must approach 0 exponentially as x ! 1 and, second, 
that FX (x) must approach 0 exponentially as x ! �1. 
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immediately. Finally, if we use �s, viewed as a complex variable, in place of r, we get the 
two sided Laplace transform of the density of the random variable. Note that for all of 
these transforms, multiplication in the transform domain corresponds to convolution of the 
distribution functions or densities, and summation of independent rv’s. The simplicity of 
taking products of transforms is a major reason that transforms are so useful in probability 
theory. 

1.4 Basic inequalities 

Inequalities play a particularly fundamental role in probability, partly because many of the 
models we study are too complex to find exact answers, and partly because many of the 
most useful theorems establish limiting rather than exact results. In this section, we study 
three related inequalities, the Markov, Chebyshev, and Cherno↵ bounds. These are used 
repeatedly both in the next section and in the remainder of the text. 

1.4.1 The Markov inequality 

This is the simplest and most basic of these inequalities. It states that if a nonnegative 
random variable Y has a mean E [Y ], then, for every y > 0, Pr{Y � y} satisfies27 

Pr{Y � y}  
E [Y ] 

Markov Inequality for nonnegative Y . (1.54) 
y 

Figure 1.7 derives this result using the fact (see Figure 1.3) that the mean of a nonnegative 
rv is the integral of its complementary distribution function, i.e., of the area under the curve 
Pr{Y > z}. Exercise 1.28 gives another simple proof using an indicator random variable. 

As an example of this inequality, assume that the average height of a population of people 
is 1.6 meters. Then the Markov inequality states that at most half of the population have a 
height exceeding 3.2 meters. We see from this example that the Markov inequality is often 
very weak. However, for any y > 0, we can consider a rv that takes on the value y with 
probability ✏ and the value 0 with probability 1 � ✏; this rv satisfies the Markov inequality 
at the point y with equality. Figure 1.7 (as elaborated in Exercise 1.40) also shows that, 
for any nonnegative rv Y with a finite mean, 

lim y Pr{Y � y} = 0. (1.55) 
y!1 

This will be useful shortly in the proof of Theorem 1.5.3. 

27The distribution function of any given rv Y is known (at least in principle), and thus one might question 
why an upper bound is ever preferable to the exact value. One answer is that Y might be given as a function 
of many other rv’s and that the parameters such as the mean in a bound are much easier to find than 
the distribution function. Another answer is that such inequalities are often used in theorems which state 
results in terms of simple statistics such as the mean rather than the entire distribution function. This will 
be evident as we use these bounds. 
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Area = yPr{Y � y} 

Pr{Y � y} 

Area under curve = E [Y ]
�

�
�⇡ @ 

@ 
@ 

@R 
? 

y 

Figure 1.7: Demonstration that yPr{Y � y}  E [Y ]. By letting y ! 1, it can also 
be seen that the shaded area becomes a negligible portion of the area E [Y ], so that 
limy!1 yPr{Y > y} = 0 if E [Y ] < 1 

1.4.2 The Chebyshev inequality 

We now use the Markov inequality to establish the well-known Chebyshev inequality. Let 
Z be an arbitrary rv with finite mean E [Z] and finite variance �Z 

2 , and define Y as the 
nonnegative rv Y = (Z � E [Z])2 . Thus E [Y ] = �Z 

2 . Applying (1.54), 

ZPr
�
(Z � E [Z])2 � y  

�

y 

2 

for any y > 0. 

Replacing y with ✏2 (for any ✏ > 0) and noting that the event {(Z � E [Z])2 � ✏2} is the 
same as |Z � E [Z] | � ✏, this becomes 

�2 

Pr{|Z � E [Z] | � ✏}  
✏
Z 
2 (Chebyshev inequality). (1.56) 

Note that the Markov inequality bounds just the upper tail of the distribution function and 
applies only to nonnegative rv’s, whereas the Chebyshev inequality bounds both tails of 
the distribution function. The more important di↵erence, however, is that the Chebyshev 
bound goes to zero inversely with the square of the distance from the mean, whereas the 
Markov bound goes to zero inversely with the distance from 0 (and thus asymptotically 
with distance from the mean). 

The Chebyshev inequality is particularly useful when Z is the sample average, (X1 + X2 + 
+ Xn)/n, of a set of IID rv’s. This will be used shortly in proving the weak law of large · · · 

numbers. 

1.4.3 Cherno↵ bounds 

Cherno↵ (or exponential) bounds are another variation of the Markov inequality in which 
the bound on each tail of the distribution function goes to 0 exponentially with distance from 
the mean. For any given rv Z, let I(Z) be the interval over which the MGF gZ (r) = E 

⇥
eZr

⇤ 
exists. Letting Y = eZr for any r 2 I(Z), the Markov inequality (1.54) applied to Y is 

gZ (r)Pr{exp(rZ) � y}  for any y > 0. 
y 
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This takes on a more meaningful form if y is replaced by erb . Note that exp(rZ) � exp(rb) 
is equivalent to Z � b for r > 0 and to Z < b for r < 0. Thus, for any real b, we get the 
following two bounds, one for r > 0 and the other for r < 0: 

Pr{Z�b}  gZ (r) exp(�rb) ; (Cherno↵ bound for 0 < r 2 I(Z) (1.57) 
Pr{Zb}  gZ (r) exp(�rb) ; (Cherno↵ bound for 0 > r 2 I(Z)). (1.58) 

This provides us with a family of upper bounds on the tails of the distribution function, 
using values of r > 0 for the upper tail and r < 0 for the lower tail. For fixed 0 < r 2 I(Z), 
this bound on Pr{Z � b} decreases exponentially28 in b at rate r. Similarly, for each 
0 > r 2 I(Z), the bound on Pr{Z  b} decreases exponentially at rate r as b ! �1. 
We will see shortly that (1.57) is useful only when b > E [X] and (1.58) is useful only when 
b < E [X]). 

The most important application of these Cherno↵ bounds is to sums of IID rv’s. Let 
Sn = X1+ +Xn where X1, . . . ,Xn are IID with the MGF gX (r). Then gSn (r) = [gX (r)]n ,· · ·
so (1.57) and (1.58) (with b replaced by na) become 

Pr{Sn�na}  [gX (r)]n exp(�rna) ; ( for 0 < r 2 I(Z)) (1.59) 
Pr{Snna}  [gX (r)]n exp(�rna) ; ( for 0 > r 2 I(Z)). (1.60) 

These equations are easier to understand if we define the semi-invariant MGF, �X (r), as 

�X (r) = ln gX (r). (1.61) 

The semi-invariant MGF for a typical rv X is sketched in Figure 1.8. The major features 
to observe are, first, that �0 (0) = E [X] and, second, that �00 (r) � 0 for r in the interior of X X 
I(X).. 

@ 0 r 
�(0) = 0 

@ 
@ �0(0) = E [X]

@ 
�(r) �00(0) = �2 

X@ 
@ �00(r) > 0

slope = E [X] 

Figure 1.8: Semi-invariant moment-generating function �(r) for a typical rv X assum­
@
@

@
@

1 
r r 

�0(0) = E [X]. Also, for r in the interior of I(X), Exercise 1.24 shows that �00(r) � 0, 
and in fact, �00(r) is strictly positive except in the uninteresting case where X is de­
terministic (takes on a single value with probability 1). As indicated in the figure, the 
straight line of slope E [X] through the origin is tangent to �(r). 

28This seems paradoxical, since Z seems to be almost arbitrary. However, since r 2 I(Z), we have R 
e rbdFZ (b) < 1. 

ing r� < 0 < r+. Since �(r) = ln g(r), we see that that �(r)
=
 g(r) g(r). Thus
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In terms of �X (r), (1.59) and (1.60) become 

Pr{Sn�na}  exp(n[�X (r) � ra]) ; ( for 0 < r 2 I(X) (1.62) 
Pr{Snna}  exp(n[�X (r) � ra]) ; ( for 0 > r 2 I(X). (1.63) 

These bounds are geometric in n for fixed a and r, so we should ask what value of r provides 
the tightest bound for any given a. Since �00 (r) > 0, the tightest bound arises either at X 
that r for which �0(r) = a or at one of the end points, r� or r+, of I(X). This minimum 
value is denoted by 

µX (a) = inf [�X (r) � ra]. 
r 

Note that (�X (r) � ra)|r=0 = 0 and @ (�X (r) � ra)|r=0 = E [X] � a. Thus if a > E [X], @r 
then �X (r) � ra must be negative for su�ciently small positive r. Similarly, if a < E [X], 
then �X (r) � ra is negative for negative r su�ciently close29 to 0. In other words, 

Pr{Sn�na}  exp(nµX (a)) ; where µX (a) < 0 for a > E [X] (1.64) 
Pr{Snna}  exp(nµX (a)) ; where µX (a) < 0 for a < E [X] . (1.65) 

This is summarized in the following lemma: 

Lemma 1.4.1. Assume that 0 is in the interior of I(X) and let Sn be the sum of n IID 
rv’s each with the distribution of X. Then µX (a) = infr[�X (r) � ra] < 0 for all a =6 E [X]. 
Also, Pr{Sn � na}  enµX (a) for a > E [X] and Pr{Sn  na}  enµX (a) for a < E [X]. 

Figure 1.9 illustrates the lemma and gives a graphical construction to find30 µX (a) = 
infr[�X (r) � ra]. 

These Cherno↵ bounds will be used in the next section to help understand several laws of 
large numbers. They will also be used extensively in Chapter 7 and are useful for detection, 
random walks, and information theory. 

The following example evaluates these bounds for the case where the IID rv’s are binary. 
We will see that in this case the bounds are exponentially tight in a sense to be described. 

Example 1.4.1. Let X be binary with pX (1) = p and pX (0) = q = 1 � p. Then gX (r) = 
rq + pe for �1 < r < 1. Also, �X (r) = ln(q + per). To be consistent with the expression 

for the binomial PMF in (1.23), we will find bounds to Pr{Sn � ˜ pn} forpn} and Pr{Sn  ˜
˜ p < p respectively. Thus, according to Lemma 1.4.1, we first evaluate p > p and ˜

µX (p̃) = inf pr].[�X (r) � ˜
r 

The minimum occurs at that r for which �0 (r) = p̃, i.e., at X 

rpe
= p. ˜

q + per 

29In fact, for r su�ciently small, �(r) can be approximated by a second order power series, �(r) 
�(0) + r�0(0) + (r 2/2)�00(0) = rX + (r 2/2)�X 

2 . It follows that µX (a) ⇡ �(a � X)2/2�X 
2 for very small r. 

⇡ 

30As a special case, the infimum might occur at the edge of the interval of convergence, i.e., at r� or r+. 
As shown in Exercise 1.23, the infimum can be at r+ (r�) only if gX (r+) (gX (r�) exists, and in this case, 
the graphical techinique in Figure 1.9 still works. 
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�(r)0 r0 r 0 
�(r) � ra 

⌘
⌘⌘slope = a 

�(ro) � roa 

XXXXXXXXXXX
⌘

⌘�(r) 
XXXXXXXXXXX

X
XX 

⌘
�(r0) ⌘0 ⌘

slope = �0(ro) = a �(r0) � r0a ⌘
r0 

Figure 1.9: Graphical minimization of �(r) � ar: For any r 2 I(X), �(r) � ar is the 
vertical axis intercept of a line of slope a through the point (r, �(r)). The minimum 
occurs when the line of slope a is tangent to the curve. The two examples show one 
case where E [X] < 0 and another where E [X] > 0. 

Rearranging terms, 

˜
e r = 

pq 
pq̃

where q̃ = 1 � p.̃ (1.66) 

Substituting this minimizing value of r into ln(q + per) � rp̃ and rearranging terms, 

µX (p̃) = p̃ ln 
p

p 
˜

+ q̃ ln 
q

q̃
. (1.67) 

Substituting this into (1.64), and (1.65), we get the following Cherno↵ bounds for binary 
IID rv’s. As shown above, they are exponentially decreasing in n. 

p q
Pr{Sn�np̃}  exp 

⇢
n 


p̃ ln 

p̃
+ q̃ ln 

q̃

�� 
; for p̃ > p (1.68) 

Pr{Snnp̃}  exp 

⇢
n 


p̃ ln 

p

p 
˜

+ q̃ ln 
q

q 
˜

�� 
; for p̃ < p. (1.69) 

So far, it seems that we have simply developed another upper bound on the tails of the 
distribution function for the binomial. It will then perhaps be surprising to compare this 
bound with the asymptotically correct value (repeated below) for the binomial PMF in 
(1.26). 

pSn (k) ⇠ 

r 
2⇡

1 
np̃q̃

exp n [p̃ ln(p/p̃) + q̃ ln(q/q̃)] for p̃ = 
n

k
. (1.70) 

For any integer value of np̃ with p̃ > p, we can lower bound Pr{Sn�np̃} by the single term 
pSn (np̃). Thus Pr{Sn�np̃} is both upper and lower bounded by quantities that decrease 
exponentially with n at the same rate. The lower bound is asymptotic in n and has the 
coe�cient 1/

p
2⇡np̃q̃. These di↵erences are essentially negligible for large n compared to 

the exponential term. We can express this analytically by considering the log of the upper 
bound in (1.68) and the lower bound in (1.70). 

lim 
ln Pr{Sn � np̃} 

= 


p̃ ln 

p 
+ q̃ ln 

q 
� 

where p̃ > p. (1.71) 
n!1 n p̃ q̃
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In the same way, for p̃ < p, 

lim 
ln Pr{Sn  np̃} 

= 


p̃ ln 

p 
+ q̃ ln 

q 
� 

where p̃ < p. (1.72) 
n!1 n p̃ q̃

In other words, these Cherno↵ bounds are not only upper bounds, but are also exponentially 
correct in the sense of (1.71) and (1.72). In Chapter 7 we will show that this property is 
typical for sums of IID rv’s . Thus we see that the Cherno↵ bounds are not ‘just bounds,’ 
but rather are bounds that when optimized provide the correct asymptotic exponent for the 
tails of the distribution of sums of IID rv’s. In this sense these bounds are very di↵erent 
from the Markov and Chebyshev bounds. 

1.5 The laws of large numbers 

The laws of large numbers are a collection of results in probability theory that describe 
the behavior of the arithmetic average of n rv’s for large n. For any n rv’s, X1, . . . ,Xn, 
the arithmetic average is the rv (1/n) 

Pn Xi. Since in any outcome of the experiment, i=1 
the sample value of this rv is the arithmetic average of the sample values of X1, . . . ,Xn, 
this random variable is usually called the sample average. If X1, . . . ,Xn are viewed as 
successive variables in time, this sample average is called the time-average. Under fairly 
general assumptions, the standard deviation of the sample average goes to 0 with increasing 
n, and, in various ways depending on the assumptions, the sample average approaches the 
mean. 

These results are central to the study of stochastic processes because they allow us to relate 
time-averages (i.e., the average over time of individual sample paths) to ensemble-averages 
(i.e., the mean of the value of the process at a given time). In this section, we develop and 
discuss two of these results, the weak and the strong law of large numbers for independent 
identically distributed rv’s. The strong law requires considerable patience to understand, 
but it is a basic and essential result in understanding stochastic processes. We also discuss 
the central limit theorem, partly because it enhances our understanding of the weak law, 
and partly because of its importance in its own right. 

1.5.1 Weak law of large numbers with a finite variance 

Let X1,X2, . . . ,Xn be IID rv’s with a finite mean X and finite variance �2 Let Sn = X . 
X1 + + Xn, and consider the sample average Sn/n. We saw in (1.42) that �2 = n�2 · · · Sn X . 
Thus the variance of Sn/n is 

2
# 

�21 
VAR 


Sn 

� 
= E 

"✓
Sn � nX 

◆ 
= E 

h�
Sn � nX

�2i = X . (1.73) 
n n n2 n 

This says that the standard deviation of the sample average Sn/n is �/
p

n, which approaches 
0 as n increases. Figure 1.10 illustrates this decrease in the standard deviation of Sn/n with 
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increasing n. In contrast, recall that Figure 1.5 illustrated how the standard deviation of 
Sn increases with n. From (1.73), we see that 

lim E 

"✓
Sn � X

◆2
# 

= 0. (1.74) 
n!1 n 

As a result, we say that Sn/n converges in mean square to X. 

1 · · 

0.8 · · 

0.6 

0.4 

0.2 · · 

0 

FYn (z) 

Yn = Sn 
n 

· · · · · · · · · · · · 

· · · · · · · · · · · 

· · · · · · · · · · · 

· · · · · · · · · · · · 

· · · · · · · · · · · · 

n = 4 

n = 20 

n = 50 

0 0.25 0.5 0.75 1 

Figure 1.10: The same distribution as Figure 1.5, scaled di↵erently to give the distri­
bution function of the sample average Yn. It can be visualized that as n increases, the 
distribution function of Yn becomes increasingly close to a unit step at the mean, 0.25, 
of the variables X being summed. 

This convergence in mean square says that the sample average, Sn/n, di↵ers from the mean, 
X, by a random variable whose standard deviation approaches 0 with increasing n. This 
convergence in mean square is one sense in which Sn/n approaches X, but the idea of a 
sequence of rv’s (i.e., a sequence of functions) approaching a constant is clearly much more 
involved than a sequence of numbers approaching a constant. The laws of large numbers 
bring out this central idea in a more fundamental, and usually more useful, way. We start 
the development by applying the Chebyshev inequality (1.56) to the sample average, 

Sn �2 

Pr
⇢��� � X

��� > ✏

� 
 

n✏2 . (1.75) 
n 

This is an upper bound on the probability that Sn/n di↵ers by more than ✏ from its mean, X. 
This is illustrated in Figure 1.10 which shows the distribution function of Sn/n for various 
n. The figure suggests that limn!1 FSn/n(y) = 0 for all y < X and limn!1 FSn/n(y) = 1 
for all y > X. This is stated more cleanly in the following weak law of large numbers, 
abbreviated WLLN 

Theorem 1.5.1 (WLLN with finite variance). For each integer n � 1, let Sn = X1 + 
+ Xn be the sum of n IID rv’s with a finite variance. Then the following holds:· · · 

Snlim Pr
⇢��� � X

��� > ✏

� 
= 0 for every ✏ > 0. (1.76) 

n!1 n 
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Proof: For every ✏ > 0, Pr
�
|Sn/n � X| > ✏ is bounded between 0 and �2/n✏2 . Since the 

upper bound goes to 0 with increasing n, the theorem is proved. 

Discussion: The algebraic proof above is both simple and rigorous. However, the geometric 
argument in Figure 1.11 probably provides more intuition about how the limit takes place. 
It is important to understand both. 

1 � � 

6 

? 

�1 

? 

6 

�2 
? 

6 
1 

0 
X 

2✏ �1 + �2 = �  �2 

n✏2 - � 

FSn/n⇣⇣⇣) 

Figure 1.11: Approximation of the distribution function FSn/n of a sample average 
by a step function at the mean: From (1.75), the probability � that Sn/n di↵ers from 
X by more than ✏ (i.e., Pr

�
|Sn/n � X| � ✏ ) is at most �2/n✏2 . The complementary 

event, where |Sn/n � X| < ✏, has probability 1 � � � 1 � �2/n✏2 . This means that 
we can construct a rectangle of width 2✏ centered on X and of height 1 � � such that 
FSn/n enters the rectangle at the lower left (say at (X � ✏, �1)) and exits at the upper 
right, say at (X + ✏, 1 � �2)). Now visualize increasing n while holding ✏ fixed. In the 
limit, 1 � � ! 1 so Pr

�
|Sn/n � X| � ✏ ! 0. Since this is true for every ✏ > 0 (usually 

with slower convergence as ✏ gets smaller), FSn/n(y) approaches 0 for every y < X and 
approaches 1 for every y > X, i.e., FSn/n approaches a unit step at X. Note that 
there are two ‘fudge factors’ here, ✏ and � and, since we are approximating an entire 
distribution function, neither can be omitted, except by directly going to a limit as 
n !1. 

We refer to (1.76) as saying that Sn/n converges to X in probability. To make sense out of 
this, we should view X as a deterministic random variable, i.e., a rv that takes the value X 
for each sample point of the space. Then (1.76) says that the probability that the absolute 
di↵erence, |Sn/n � X|, exceeds any given ✏ > 0 goes to 0 as n !1. 31 

One should ask at this point what (1.76) adds to the more specific bound in (1.75). In 
particular (1.75) provides an upper bound on the rate of convergence for the limit in (1.76). 
The answer is that (1.76) remains valid when the theorem is generalized. For variables 
that are not IID or have an infinite variance, (1.75) is no longer necessarily valid. In some 
situations, as we see later, it is valuable to know that (1.76) holds, even if the rate of 
convergence is extremely slow or unknown. 

One di�culty with the bound in (1.75) is that it is extremely loose in most cases. If Sn/n 
actually approached X this slowly, the weak law of large numbers would often be more a 
mathematical curiosity than a highly useful result. If we assume that the MGF of X exists 

31Saying this in words gives one added respect for mathematical notation, and perhaps in this case, it is 
preferable to simply understand the mathematical statement (1.76). 
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in an open interval around 0, then (1.75) can be strengthened considerably. Recall from 
(1.64) and (1.65) that for any ✏ > 0, 

Pr
�
Sn/n � X � ✏ exp(nµX (X + ✏)) (1.77) 

Pr
�
Sn

 

exp(nµX (X � ✏)), (1.78)/n � X  �✏  

where from Lemma 1.4.1, µX (a) = infr{�X (r) � ra} < 0 for a =6 X. Thus, for any ✏ > 0, 

Pr
�
|Sn/n � X| � ✏  exp[nµX (X + ✏)] + exp[nµX (X � ✏)]. (1.79) 

The bound here, for any given ✏ > 0, decreases geometrically in n rather than harmonically. 
In terms of Figure 1.11, the height of the rectangle must approach 1 at least geometrically 
in n. 

1.5.2 Relative frequency 

We next show that (1.76) can be applied to the relative frequency of an event as well as to the 
sample average of a random variable. Suppose that A is some event in a single experiment, 
and that the experiment is independently repeated n times. Then, in the probability model 
for the n repetitions, let Ai be the event that A occurs at the ith trial, 1  i  n. The 
events A1, A2, . . . , An are then IID. 

If we let IAi be the indicator rv for A on the ith trial, then the rv Sn = IA1 + IA2 + + IAn· · · 
is the number of occurrences of A over the n trials. It follows that 

relative frequency of A = 
Sn = 

Pn
i=1 IAi . (1.80) 

n n 

Thus the relative frequency of A is the sample average of the binary rv’s IAi , and everything 
we know about the sum of IID rv’s applies equally to the relative frequency of an event. In 
fact, everything we know about the sums of IID binary rv’s applies to relative frequency. 

1.5.3 The central limit theorem 

The weak law of large numbers says that with high probability, Sn/n is close to X for 
large n, but it establishes this via an upper bound on the tail probabilities rather than an 
estimate of what FSn/n looks like. If we look at the shape of FSn/n for various values of n in 
the example of Figure 1.10, we see that the function FSn/n becomes increasingly compressed 
around X as n increases (in fact, this is the essence of what the weak law is saying). If we 
normalize the random variable Sn/n to 0 mean and unit variance, we get a normalized rv, 
Zn = (Sn/n � X)

p
n/�. The distribution function of Zn is illustrated in Figure 1.12 for 

the same underlying X as used for Sn/n in Figure 1.10. The curves in the two figures are 
the same except that each curve has been horizontally scaled by 

p
n in Figure 1.12. 

Inspection of Figure 1.12 shows that the normalized distribution functions there seem to be 
approaching a limiting distribution. The critically important central limit theorem states 
that there is indeed such a limit, and it is the normalized Gaussian distribution function. 
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Figure 1.12: The same distribution functions as Figure 1.5 normalized to 0 mean and 
unit standard deviation, i.e., the distribution functions of Zn = (Sn/n � X) 

p
n for�X 

n = 4, 20, 50. Note that as n increases, the distribution function of Zn slowly starts to 
resemble the normal distribution function. 

Theorem 1.5.2 (Central limit theorem (CLT)). Let X1,X2, . . . be IID rv’s with finite 
mean X and finite variance �2 . Then for every real number z, 

lim Pr
⇢

Sn � nX  z

� 
= �(z), (1.81) 

n!1 �
p

n 

where �(z) is the normal distribution function, i.e., the Gaussian distribution with mean 0 
and variance 1, 

2 

�(z) = 
Z z 1 

exp(�y
) dy. p

2⇡ 2�1 

Discussion: The rv’s Zn = (Sn � nX)/(�
p

n) for each n � 1 on the left side of (1.81) each 
have mean 0 and variance 1. The central limit theorem (CLT), as expressed in (1.81), says 
that the sequence of distribution functions, FZ1 (z), FZ2 (z), . . . converges at each value of z 
to �(z) as n ! 1. In other words, limn!1 FZn (z) = �(z) for each z 2 R. This is called 
convergence in distribution, since it is the sequence of distribution functions, rather than 
the sequence of rv’s that is converging. The theorem is illustrated by Figure 1.12. 

The reason why the word central appears in the CLT can be seen by rewriting (1.81) as 

�z
lim Pr

⇢
S

n 
n � X  p

n 

� 
= �(z), (1.82) 

n!1 

Asymptotically, then, we are looking at a sequence of sample averages that di↵er from the 
mean by a quantity going to 0 with n as 1/

p
n, i.e., by sample averages very close to the 

mean for large n. This should be contrasted with the optimized Cherno↵ bound in (1.64) 
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and (1.65) which look at a sequence of sample averages that di↵er from the mean by a 
constant amount for large n. These latter results are exponentially decreasing in n and are 
known as large deviation results. 

The CLT says nothing about speed of convergence to the normal distribution. The Berry-
Esseen theorem (see, for example, Feller, [8]) provides some guidance about this for cases 
in which the third central moment E 

⇥
|X � X|3

⇤ 
exists. This theorem states that 

����Pr
⇢

Sn 

�

�pn

n

X)  z

�
� �(z)

����  
CE 

⇥
|
�

X 
3
p� 

n

X|3
⇤ 
. (1.83) 

where C can be upper bounded by 0.766. We will come back shortly to discuss convergence 
in greater detail. 

The CLT helps explain why Gaussian rv’s play such a central role in probability theory. 
In fact, many of the cookbook formulas of elementary statistics are based on the tacit 
assumption that the underlying variables are Gaussian, and the CLT helps explain why 
these formulas often give reasonable results. 

One should be careful to avoid reading more into the CLT than it says. For example, the 
normalized sum, (Sn � nX)/�

p
n need not have a density that is approximately Gaussian. 

In fact, if the underlying variables are discrete, the normalized sum is discrete and has no 
density. The PMF of the normalized sum can have very detailed fine structure; this does 
not disappear as n increases, but becomes “integrated out” in the distribution function. 

The CLT tell us quite a bit about how FSn/n converges to a step function at X. To see this, 
rewrite (1.81) in the form 

�z
lim Pr

⇢
S

n 
n � X  p

n 

� 
= �(z). (1.84) 

n!1 

This is illustrated in Figure 1.13 where we have used �(z) as an approximation for the 
probability on the left. 

A proof of the CLT requires mathematical tools that will not be needed subsequently. Thus 
we give a proof only for the binomial case. Feller ([7] and [8]) gives a thorough and careful 
exposition and proof of several versions of the CLT including those here.32 

Proof*33 of Theorem 1.5.2 (binomial case): We first establish a somewhat simpler 
result which uses finite limits on both sides of (Sn � nX)/�

p
n, i.e., we show that for any 

finite y < z, 

lim Pr
⇢

y < 
Sn � nX  z

� 
= 
Z z 1 

exp 

✓
�u2 ◆ 

du. (1.85) 
n!1 �

p
n y 

p
2⇡ 2 

32Many elementary texts provide ‘simple proofs,’ using transform techniques, but, among other problems, 
they usually indicate that the normalized sum has a density that approaches the Gaussian density, which is 
incorrect for all discrete rv’s. 

33This proof can be omitted without loss of continuity. However, it is an important part of achieving a 
thorough understanding of the CLT. 
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Figure 1.13: Approximation of the distribution function FSn/n of a sample average by 
a Gaussian distribution of the same mean and variance. Whenever n is increased by 
a factor of 4, the curve is horizontally scaled inward toward X by a factor of 2. The 
CLT says both that these curves are scaled horizontally as 1/

p
n and also that they are 

better approximated by the Gaussian of the given mean and variance as n increases. 

The probability on the left of (1.85) can be rewritten as 

Sn � nX	 Sn � z
Pr
⇢

y <  z

� 
= Pr

⇢
� y 

< � X  

� 
�
p

n	
p

n n 
p

n 

= 
X

pSn (k) for 
� y

<
k � z

.	 (1.86)p
n n 

� p  p
n 

k 

Let p̃ = k/n, q̃ = 1 � p̃, and ✏(k, n) = p̃� p. We abbreviate ✏(k, n) as ✏ where k and n are 
clear from the context. From (1.23), we can express pSn (k) as 

1 
pSn (k)	 exp n [p̃ ln(p/p̃) + q̃ ln(q/q̃)] ⇠	 p

2⇡np̃q̃

1 ✏ ✏ 
=	 exp 


�n(p + ✏) ln 

✓
1 + 

◆
� n(q � ✏) ln 

✓
1 � 

◆� 

✏3 ✏2 ✏3 

= 

p
2⇡n(p +

1 

✏)(q � ✏) 

exp 

✓
✏2 

+ 

p 

+ + 

◆�
.

q 

(1.87)p
2⇡n(p + ✏)(q � ✏) 


�n 

2p 
� 

6p2 · · · 
2q 6q2 · · · 

where we have used the power series expansion, ln(1 + u) = u � u2/2 + u3/3 . From · · · 
(1.86), �y/

p
n < p + ✏(k, n)  �z/

p
n, so the omitted terms in (1.87) go to 0 uniformly 

over the range of k in (1.86). The term (p + ✏)(q � ✏) also converges (uniformly in k) to pq 
as n !1. Thus 

✏2 

pSn (k) 
1 

exp 


�n 

✓
✏2 

+ 

◆� 
⇠ p

2⇡npq 2p 2q 

= p
2⇡

1 
npq 

exp 


�
2
n

pq

✏2 � 

1	 2(k, n) k � np
= p

2⇡npq 
exp 


�u

2 

� 
where u(k, n) = p

pqn 
. (1.88) 
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Since the ratio of the right to left side in (1.88) approaches 1 uniformly in k over the given 
range of k, 

X
pSn (k) ⇠ 

X 
p

2⇡
1 
npq 

exp 


�u2(

2 
k, n)

�
. (1.89) 

k k 

Since u(k, n) increases in increments of 1/ppqn, we can view the sum on the right above 
as a Riemann sum approximating (1.85). Since the terms of the sum get closer as n !1, 
and since the Riemann integral exists, (1.85) must be satisfied in the limit. 

To complete the proof, note from the Chebyshev inequality that 

� y 1
Pr
⇢
|Sn � X| � p|

n

|
� 
 

y2 , 

and thus 

Pr
⇢

y < 
Sn 

�

�p
n

nX  z

� 
 Pr

⇢
Sn 

�

�pn

n

X  z

� 
 

y

1 
2 + Pr

⇢
y < 

Sn 

�

�p
n

nX  z

� 

Choosing y = �n1/4, we see that 1/y2 ! 0 as n ! 1. Also n✏3(k, n) in (1.87) goes to 0 
as n !1 for all (k, n) satisfying (1.86) with y = �n1/4 . Taking the limit as n !1 then 
proves the theorem. 

If we trace through the various approximations in the above proof, we see that the error 
in pSn (k) goes to 0 as 1/n. This is faster than the 1/

p
n bound in the Berry-Esseen 

theorem. If we look at Figure 1.3, however, we see that the distribution function of Sn/n 
contains steps of order 1/

p
n. These vertical steps cause the binomial result here to have 

the same slow 1/
p

n convergence as the general Berry-Esseen bound. It turns out that if 
we evaluate the distribution function only at the midpoints between these steps, i.e., at 
z = (k + 1/2 � np)/�

p
n, then the convergence in the distribution function is of order 1/n. 

Since the CLT provides such explicit information about the convergence of Sn/n to X, it 
is reasonable to ask why the weak law of large numbers (WLLN) is so important. The 
first reason is that the WLLN is so simple that it can be used to give clear insights to 
situations where the CLT could confuse the issue. A second reason is that the CLT requires 
a variance, where as we see next, the WLLN does not. A third reason is that the WLLN 
can be extended to many situations in which the variables are not independent and/or not 
identically distributed.34 A final reason is that the WLLN provides an upper bound on the 
tails of FSn/n, whereas the CLT provides only an approximation. 

1.5.4 Weak law with an infinite variance 

We now establish the WLLN without assuming a finite variance. 

34Central limit theorems also hold in many of these more general situations, but they do not hold as 
widely as the WLLN. 
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Theorem 1.5.3 (WLLN). For each integer n � 1, let Sn = X1+ +Xn where X1,X2, . . .· · ·
are IID rv’s satisfying E [|X|] < 1. Then for any ✏ > 0, 

Snlim Pr
⇢��� � E [X] 

��� > ✏

� 
= 0. (1.90) 

n!1 n 

Proof:35 We use a truncation argument; such arguments are used frequently in dealing 
with rv’s that have infinite variance. The underlying idea in these arguments is important, 
but some less important details are treated in Exercise 1.35. Let b be a positive number 
(which we later take to be increasing with n), and for each variable Xi, define a new rv X̆i 

(see Figure 1.14) by 8
Xi for E [X] � b  Xi  E [X] + b 

X̆i = 
< 

E [X] + b for Xi > E [X] + b (1.91) : 
E [X] � b for Xi < E [X] � b. 

X + b 

FX FX̆

X X � b X 

Figure 1.14: The truncated rv X̆ for a given rv X has a distribution function which is 
truncated at X ± b. 

The truncated variables X̆i are IID and, because of the truncation, must have a finite 
second moment. Thus the WLLN applies to the sample average S̆n = X̆1 + X̆n. More· · · 
particularly, using the Chebshev inequality in the form of (1.75) on S̆n/n, we get 

S̆n ✏ 4�2
˘ 8bE [ X ]

Pr

(����� � E 
h
X̆
i����� > 

) 
X | |

, 
n 2

 
n✏2  

n✏2 

where Exercise 1.35 demonstrates the final inequality. Exercise 1.35 also shows that E
⇥
X̆
⇤ 

approaches E [X] as b !1 and thus that 

Pr

(�����
S̆

n 
n � E [X]

����� > ✏

) 
 

8bE 
n

[
✏

|
2 

X|] 
, (1.92) 

for all su�ciently large b. This bound also applies to Sn/n in the case where Sn = S̆n, so 
we have the following bound (see Exercise 1.35 for further details): 

˘
Pr
⇢ ����Sn 

n � E [X] 
���� > ✏

� 
 Pr

(�����
S

n 
n � E [X] 

����� > ✏

)
+ Pr

n
Sn =6 S̆n

o
. (1.93) 

35The details of this proof can be omitted without loss of continuity. However, the general structure of 
the truncation argument should be understood. 
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The original sum Sn is the same as S̆n unless one of the Xi has an outage, i.e., |Xi �X| > b. 
Thus, using the union bound, Pr

n
Sn =6 S̆n

o 
 nPr

�
|Xi � X| > b . Substituting this and 

(1.92) into (1.93), 

Sn 8bE [ X ] n
Pr
⇢ ���� n 

� E [X] 
���� > ✏

� 
 

n✏

|
2 

|
+ 

b 
[b Pr{ |X � E [X] | > b}] . (1.94) 

We now show that for any ✏ > 0 and � > 0, Pr
�
|Sn/n � X| � ✏  � for all su�ciently 

large n. We do this, for given ✏, �, by choosing b(n) for each n so that the first term in 
(1.94) is equal to �/2. Thus b(n) = n�✏2/16E [|X|]. This means that n/b(n) in the second 
term is independent of n. Now from (1.55), limb!1 bPr

�
|X � X| > b = 0, so by choosing 

b(n) su�ciently large (and thus n su�ciently large), the second term in (1.94) is also at 
most �/2. 

1.5.5 Convergence of random variables 

This section has now developed a number of results about how the sequence of sample 
averages, {Sn/n; n � 1} for a sequence of IID rv’s {Xi; i � 1} approach the mean X. 
In the case of the CLT, the limiting distribution around the mean is also specified to be 
Gaussian. At the outermost intuitive level, i.e., at the level most useful when first looking 
at some very complicated set of issues, viewing the limit of the sample averages as being 
essentially equal to the mean is highly appropriate. 

At the next intuitive level down, the meaning of the word essentially becomes important 
and thus involves the details of the above laws. All of the results involve how the rv’s Sn/n 
change with n and become better and better approximated by X. When we talk about a 
sequence of rv’s (namely a sequence of functions on the sample space) being approximated 
by a rv or numerical constant, we are talking about some kind of convergence, but it clearly 
is not as simple as a sequence of real numbers (such as 1/n for example) converging to some 
given number (0 for example). 

The purpose of this section, is to give names and definitions to these various forms of 
convergence. This will give us increased understanding of the laws of large numbers already 
developed, but, equally important, It will allow us to develop another law of large numbers 
called the strong law of large numbers (SLLN). Finally, it will put us in a position to use 
these convergence results later for sequences of rv’s other than the sample averages of IID 
rv’s. 

We discuss four types of convergence in what follows, convergence in distribution, in prob­
ability, in mean square, and with probability 1. For the first three, we first recall the type 
of large-number result with that type of convergence and then give the general definition. 

For convergence with probability 1 (WP1), we first define this type of convergence and then 
provide some understanding of what it means. This will then be used in Chapter 4 to state 
and prove the SLLN. 
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We start with the central limit theorem, which, from (1.81) says 

1 2 

lim Pr
⇢

Sn p� 
n

n

�

X  z

� 
= 
Z z 

p
2⇡ 

exp 

✓
�
2 
x
◆ 

dx for every z 2 R. 
n!1 �1 

This is illustrated in Figure 1.12 and says that the sequence (in n) of distribution functions 
Pr
n

Snp�
n
n
�
X  z

o 
converges at every z to the normal distribution function at z. This is an 

example of convergence in distribution. 

Definition 1.5.1. A sequence of random variables, Z1, Z2, . . . , converges in distribution 
to a random variable Z if limn!1 FZn (z) = FZ (z) at each z for which FZ (z) is continuous. 

For the CLT example, the rv’s that converge in distribution are {Sn�nX ; n � 1}, and theyp
n� 

converge in distribution to the normal Gaussian rv. 

Convergence in distribution does not say that the rv’s themselves converge in any reasonable 
sense, but only that their distribution functions converge. For example, let Y1, Y2, . . . , be 
IID rv’s, each with the distribution function FY . For each n � 1, if we let let Zn = Yn +1/n, 
then it is easy to see that {Zn; n � 1} converges in distribution to Y . However (assuming 
Y has variance �2 and is independent of each Zn), we see that Zn � Y has variance 2�2 

Y Y . 
Thus Zn does not get close to Y as n ! 1 in any reasonable sense, and Zn � Zm does 
not get small as n and m both get large.36 As an even more trivial example, the sequence 
{Yn n � 1} converges in distribution to Y . 

For the CLT, it is the rv’s Snp�
n
n
�
X that converge in distribution to the normal. As shown in 

Exercise 1.38, however, the rv Sn�nX S2n�2nX is not close to 0 in any reasonable sense,p
n� � p

2n� 
even though the two terms have distribution functions that are very close for large n. 

For the next type of convergence of rv’s, the WLLN, in the form of (1.90), says that 

Snlim Pr
⇢��� � X

��� > ✏

� 
= 0 for every ✏ > 0. 

n!1 n 

This is an example of convergence in probability, as defined below: 

Definition 1.5.2. A sequence of random variables Z1, Z2, . . . , converges in probability to 
a rv Z if limn!1 Pr{|Zn � Z| > ✏} = 0 for every ✏ > 0. 

For the WLLN example, Zn in the definition is the relative frequency Sn/n and Z is the 
constant rv X. It is probably simpler and more intuitive in thinking about convergence 
of rv’s to think of the sequence of rv’s {Yn = Zn � Z; n � 1} as converging to 0 in some 
sense.37 As illustrated in Figure 1.10, convergence in probability means that {Yn; n � 1}
converges in distribution to a unit step function at 0. 

36In fact, saying that a sequence of rv’s converges in distribution is unfortunate but standard terminology. 
It would be just as concise, and far less confusing, to say that a sequence of distribution functions converge 
rather than saying that a sequence of rv’s converge in distribution. 

37Definition 1.5.2 gives the impression that convergence to a rv Z is more general than convergence to 
a constant or convergence to 0, but converting the rv’s to Yn = Zn � Z makes it clear that this added 
generality is quite superficial. 
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An equivalent statement, as illustrated in Figure 1.11, is that {Yn; n � 1} converges in 
probability to 0 if limn!1 FYn (y) = 0 for all y < 0 and limn!1 FYn (y) = 1 for all y > 0. 
This shows that convergence in probability is a special case of convergence in distribution, 
since with convergence in probability, the sequence FYn of distribution functions converges 
to a unit step at 0. Note that limn!1 FYn (y) is not specified at y = 0. However, the step 
function is not continuous at 0, so the limit there need not be specified for convergence in 
distribution. 

Convergence in probability says quite a bit more than convergence in distribution. As an im­
portant example of this, consider the di↵erence Yn �Ym for n and m both large. If {Yn; n �
1} converges in probability to 0, then Yn and Ym are both close to 0 with high probability for 
large n and m, and thus close to each other. More precisely, limm!1,n!1 Pr{|Yn � Ym| > ✏} = 
0 for every ✏ > 0. If the sequence {Yn; n � 1} merely converges in distribution to some 
arbitrary distribution, then, as we saw, Zn � Zm can be large with high probability, even 
when n and m are large. Another example of this is given in Exercise 1.38. 

It appears paradoxical that the CLT is more explicit about the convergence of Sn/n to X 
than the weak law, but it corresponds to a weaker type of convergence. The resolution of 
this paradox is that the sequence of rv’s in the CLT is {Sn�nX ; n � 1}. The presence of p

n� p
n in the denominator of this sequence provides much more detailed information about 

how Sn/n approaches X with increasing n than the limiting unit step of FSn/n itself. For 
example, it is easy to see from the CLT that limn!1 FSn/n(X) = 1/2, which can not be 
derived directly from the weak law. 

Yet another kind of convergence is convergence in mean square (MS). An example of this, 
for the sample average Sn/n of IID rv’s with a variance, is given in (1.74), repeated below: 

lim E 

"✓
Sn � X

◆2
# 

= 0. 
n!1 n 

The general definition is as follows: 

Definition 1.5.3. A sequence of rv’s Z1, Z2, . . . , converges in mean square (MS) to a rv 
Z if limn!1 E 

⇥
(Zn � Z)2

⇤ 
= 0. 

Our derivation of the weak law of large numbers (Theorem 1.5.1) was essentially based on 
the MS convergence of (1.74). Using the same approach, Exercise 1.37 shows in general that 
convergence in MS implies convergence in probability. Convergence in probability does not 
imply MS convergence, since as shown in Theorem 1.5.3, the weak law of large numbers 
holds without the need for a variance. 

Figure 1.15 illustrates the relationship between these forms of convergence, i.e., mean square 
convergence implies convergence in probability, which in turn implies convergence in dis­
tribution. The figure also shows convergence with probability 1 (WP1), which is the next 
form of convergence to be discussed. 
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## 
MS

WP1 "!"! 
In probability 

Distribution 

Figure 1.15: Relationship between di↵erent kinds of convergence: Convergence in dis­
tribution is the most general and is implied by all the others. Convergence in probability 
is the next most general and is implied by convergence with probability 1 (WP1) and 
by mean square (MS) convergence, neither of which imply the other. 

1.5.6 Convergence with probability 1 

We next define and discuss convergence with probability 1, abbreviated as convergence WP1. 
Convergence WP1 is often referred to as convergence a.s. (almost surely) and convergence 
a.e. (almost everywhere). The strong law of large numbers, which is discussed briefly in 
this section and further discussed and proven in various forms in Chapters 4 and 7, provides 
an extremely important example of convergence WP1. The general definition is as follows: 

Definition 1.5.4. Let Z1, Z2, . . . , be a sequence of rv’s in a sample space ⌦ and let Z be 
another rv in ⌦. Then {Zn; n � 1} is defined to converge to Z with probability 1 (WP1) if 

Pr
n
! 2 ⌦ : lim Zn(!) = Z(!)

o 
= 1. (1.95) 

n!1 

The condition Pr{! 2 ⌦ : limn!1 Zn(!) = Z(!)} = 1 is often stated more compactly as 
Pr{limn Zn = Z} = 1, and even more compactly as limn Zn = Z WP1, but the form here 
is the simplest for initial understanding. As discussed in Chapter 4. the SLLN says that if 
{Xi; i � 1} are IID with E [|X|] < 1, then the sequence of sample averages, {Sn/n; n � 1}
converges WP1 to X. 

In trying to understand (1.95), note that each sample point ! of the underlying sample 
space ⌦ maps to a sample value Zn(!) of each rv Zn, and thus maps to a sample path 
{Zn(!); n � 1}. For any given !, such a sample path is simply a sequence of real numbers. 
That sequence of real numbers might converge to Z(!) (which is a real number for the 
given !), it might converge to something else, or it might not converge at all. Thus there is 
a set of ! for which the corresponding sample path {Zn(!); n � 1} converges to Z(!), and 
a second set for which the sample path converges to something else or does not converge at 
all. Convergence WP1 of the sequence of rv’s is thus defined to occur when the first set of 
sample paths above has probability 1. 

For each !, the sequence {Zn(!); n � 1} is simply a sequence of real numbers, so we briefly 
review what the limit of such a sequence is. A sequence of real numbers b1, b2, . . . is said to 
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have a limit b if, for every ✏ > 0, there is an integer m✏ such that |bn � b|  ✏ for all n � m✏. 
An equivalent statement is that b1, b2, . . . , has a limit b if, for every integer k � 1, there is 
an integer m(k) such that |bn � b|  1/k for all n � m(k). 

Figure 1.16 illustrates this definition for those, like the author, whose eyes blur on the 
second or third ‘there exists’, ‘such that’, etc. in a statement. As illustrated, an important 
aspect of convergence of a sequence {bn; n � 1} of real numbers is that bn becomes close to 
b for large n and stays close for all su�ciently large values of n. 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

m(1) 
m(2) m(3) 

m(4) 

b + 1 

b + 1/2 
b + 1/3 

b � 1/3 
b � 1/2 

b � 1 

b 

Figure 1.16: Illustration of a sequence of real numbers b1, b2, . . . that converge to a 
number b. The figure illustrates an integer m(1) such that for all n � m(1), bn lies in 
the interval b ± 1. Similarly, for each k � 1, there is an integer m(k) such that bn lies 
in b ± 1/k for all n � m(k). Thus limn!1 bn = b means that for a sequence of ever 
tighter constraints, the kth constraint can be met for all su�ciently large n, (i.e., all 
n � m(k)). Intuitively, convergence means that the elements b1, b2, . . . get close to b 
and stay close. The sequence of positive integers m(1),m(2), . . . is nondecreasing, but 
otherwise arbitrary, depending only on the sequence {bn; n � 1}. For sequences that 
converge very slowly, the integers m(1),m(2), . . . are simply correspondingly larger. 

Figure 1.17 gives an example of a sequence of real numbers that does not converge. Intu­
itively, this sequence is close to 0 (and in fact identically equal to 0) for most large n, but 
it doesn’t stay close. 3/4 b1 b5 b25 

q q q q q q q q q q q q q q q q q q q q q q q q q q0 

Figure 1.17: Illustration of a non-convergent sequence of real numbers b1, b2, . . . . The 
sequence is defined by bn = 3/4 for n = 1, 5, 25, . . . , 5j , . . . for all integer j � 0. For all 
other n, bn = 0. The terms for which bn = 0 become increasingly rare as n !1. Note 
that bn 2 [1, 1] for all n, but there is no 

6
m(2) such that bn 2 [� 12 , 

1
2 ] for all n � m(2). 

Thus the sequence does not converge. 

The following example illustrates how a sequence of rv’s can converge in probability but 
not converge WP1. The example also provides some clues as to why convergence WP1 is 
important. 
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Example 1.5.1. Consider a sequence {Zn; n � 1} of rv’s for which the sample paths 
constitute the following slight variation of the sequence of real numbers in Figure 1.17. 
In particular, as illustrated in Figure 1.18, the nonzero term at n = 5j in Figure 1.17 is 
replaced by a nonzero term at a randomly chosen n in the interval [5j , 5j+1). 

3/4 

0 q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q
1 5 25 

Figure 1.18: Illustration of a sample path of a sequence of rv’s {Yn; n � 0} where, for 
each j � 0, Yn = 1 for an equiprobable choice of n 2 [5j , 5j+1) and Yn = 0 otherwise. 

Since each sample path contains a single one in each segment [5j , 5j+1), and contains zero’s 
elsewhere, none of the sample paths converge. In other words, Pr{! : lim Zn(!) = 0} = 
0 rather than 1. On the other hand Pr{Zn = 0} = 1 � 5�j for 5j  n < 5j+1 , so 
limn!1 Pr{Zn = 0} = 1. 

Thus this sequence of rv’s converges to 0 in probability, but does not converge to 0 WP1. 
This sequence also converges in mean square and (since it converges in probability) in 
distribution. Thus we have shown (by example) that convergence WP1 is not implied by 
any of the other types of convergence we have discussed. We will show in Section 4.2 that 
convergence WP1 does imply convergence in probability and in distribution but not in mean 
square (as illustrated in Figure 1.15). 

The interesting point in this example is that this sequence of rv’s is not bizarre (although it 
is somewhat specialized to make the analysis simple). Another important point is that this 
definition of convergence has a long history of being accepted as the ‘useful,’ ‘natural,’ and 
‘correct’ way to define convergence for a sequence of real numbers. Thus it is not surprising 
that convergence WP1 will turn out to be similarly useful for sequences of rv’s. 

There is a price to be paid in using the concept of convergence WP1. We must then look 
at the entire sequence of rv’s and can no longer analyze finite n-tuples and then go to the 
limit as n ! 1. This requires a significant additional layer of abstraction, which involves 
additional mathematical precision and initial loss of intuition. For this reason we put o↵ 
further discussion of convergence WP1 and the SLLN until Chapter 4 where it is needed. 

1.6 Relation of probability models to the real world 

Whenever experienced and competent engineers or scientists construct a probability model 
to represent aspects of some system that either exists or is being designed for some applica­
tion, they must acquire a deep knowledge of the system and its surrounding circumstances, 
and concurrently consider various types of probability models used in probabilistic analysis 
of the same or similar systems. Usually very simple probability models help in understanding 
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the real-world system, and knowledge about the real-world system helps in understanding 
what aspects of the system are well-modeled by a given probability model. For a text such 
as this, there is insu�cient space to understand the real-world aspects of each system that 
might be of interest. We must use the language of various canonical real-world systems for 
motivation and insight when studying probability models for various classes of systems, but 
such models must necessarily be chosen more for their tutorial than practical value. 

There is a danger, then, that readers will come away with the impression that analysis is 
more challenging and important than modeling. To the contrary, for work on real-world 
systems, modeling is almost always more di�cult, more challenging, and more important 
than analysis. The objective here is to provide the necessary knowledge and insight about 
probabilistic models so that the reader can later combine this with a deep understanding 
of particular real application areas. This will result in a useful interactive use of models, 
analysis, and experimentation. 

In this section, our purpose is not to learn how to model real-world problems, since, as 
said above, this requires deep and specialized knowledge of whatever application area is of 
interest. Rather it is to understand the following conceptual problem that was posed in 
Section 1.1. Suppose we have a probability model of some real-world experiment involving 
randomness in the sense expressed there. When the real-world experiment being modeled is 
performed, there is an outcome, which presumably is one of the outcomes of the probability 
model, but there is no observable probability. 

It appears to be intuitively natural, for experiments that can be carried out repeatedly 
under essentially the same conditions, to associate the probability of a given event with 
the relative frequency of that event over many repetitions. We now have the background 
to understand this approach. We first look at relative frequencies within the probability 
model, and then within the real world. 

1.6.1 Relative frequencies in a probability model 

We have seen that for any probability model, an extended probability model exists for n 
IID idealized experiments of the original model. For any event A in the original model, 
the indicator function IA is a random variable, and the relative frequency of A over n IID 
experiments is the sample average of n IID rv’s each with the distribution of IA. From 
the weak law of large numbers, this relative frequency converges in probability to E [IA] = 
Pr{A}. By taking the limit n !1, the strong law of large numbers says that the relative 
frequency of A converges with probability 1 to Pr{A}. 

In plain English, this says that for large n, the relative frequency of an event (in the n-
repetition IID model) is essentially the same as the probability of that event. The word 
essentially is carrying a great deal of hidden baggage. For the weak law, for any ✏, � > 0, 
the relative frequency is within some ✏ of Pr{A} with a confidence level 1 � � whenever 
n is su�ciently large. For the strong law, the ✏ and � are avoided, but only by looking 
directly at the limit n ! 1. Despite the hidden baggage, though, relative frequency and 
probability are related as indicated. 
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1.6.2 Relative frequencies in the real world 

In trying to sort out if and when the laws of large numbers have much to do with real-world 
experiments, we should ignore the mathematical details for the moment and agree that for 
large n, the relative frequency of an event A over n IID trials of an idealized experiment 
is essentially Pr{A}. We can certainly visualize a real-world experiment that has the same 
set of possible outcomes as the idealized experiment and we can visualize evaluating the 
relative frequency of A over n repetitions with large n. If that real-world relative frequency 
is essentially equal to Pr{A}, and this is true for the various events A of greatest interest, 
then it is reasonable to hypothesize that the idealized experiment is a reasonable model for 
the real-world experiment, at least so far as those given events of interest are concerned. 

One problem with this comparison of relative frequencies is that we have carefully specified 
a model for n IID repetitions of the idealized experiment, but have said nothing about how 
the real-world experiments are repeated. The IID idealized experiments specify that the 
conditional probability of A at one trial is the same no matter what the results of the other 
trials are. Intuitively, we would then try to isolate the n real-world trials so they don’t a↵ect 
each other, but this is a little vague. The following examples help explain this problem and 
several others in comparing idealized and real-world relative frequenices. 

Example 1.6.1. Coin tossing: Tossing coins is widely used as a way to choose the first 
player in various games, and is also sometimes used as a primitive form of gambling. Its 
importance, however, and the reason for its frequent use, is its simplicity. When tossing 
a coin, we would argue from the symmetry between the two sides of the coin that each 
should be equally probable (since any procedure for evaluating the probability of one side 
should apply equally to the other). Thus since H and T are the only outcomes (the remote 
possibility of the coin balancing on its edge is omitted from the model), the reasonable and 
universally accepted model for coin tossing is that H and T each have probability 1/2. 

On the other hand, the two sides of a coin are embossed in di↵erent ways, so that the mass 
is not uniformly distributed. Also the two sides do not behave in quite the same way when 
bouncing o↵ a surface. Each denomination of each currency behaves slightly di↵erently in 
this respect. Thus, not only do coins violate symmetry in small ways, but di↵erent coins 
violate it in di↵erent ways. 

How do we test whether this e↵ect is significant? If we assume for the moment that succes­
sive tosses of the coin are well-modeled by the idealized experiment of n IID trials, we can 
essentially find the probability of H for a particular coin as the relative frequency of H in a 
su�ciently large number of independent tosses of that coin. This gives us slightly di↵erent 
relative frequencies for di↵erent coins, and thus slightly di↵erent probability models for 
di↵erent coins. 

The assumption of independent tosses is also questionable. Consider building a carefully en­
gineered machine for tossing coins and using it in a vibration-free environment. A standard 
coin is inserted into the machine in the same way for each toss and we count the number 
of heads and tails. Since the machine has essentially eliminated the randomness, we would 
expect all the coins, or almost all the coins, to come up the same way — the more precise 
the machine, the less independent the results. By inserting the original coin in a random 
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way, a single trial might have equiprobable results, but successive tosses are certainly not 
independent. The successive trials would be closer to independent if the tosses were done 
by a slightly inebriated individual who tossed the coins high in the air. 

The point of this example is that there are many di↵erent coins and many ways of tossing 
them, and the idea that one model fits all is reasonable under some conditions and not 
under others. Rather than retreating into the comfortable world of theory, however, note 
that we can now find the relative frequency of heads for any given coin and essentially for 
any given way of tossing that coin.38 

Example 1.6.2. Binary data: Consider the binary data transmitted over a communica­
tion link or stored in a data facility. The data is often a mixture of encoded voice, video, 
graphics, text, etc., with relatively long runs of each, interspersed with various protocols 
for retrieving the original non-binary data. 

The simplest (and most common) model for this is to assume that each binary digit is 0 or 
1 with equal probability and that successive digits are statistically independent. This is the 
same as the model for coin tossing after the trivial modification of converting {H,T } into 
{0, 1}. This is also a rather appropriate model for designing a communication or storage 
facility, since all n-tuples are then equiprobable (in the model) for each n, and thus the 
facilities need not rely on any special characteristics of the data. On the other hand, if one 
wants to compress the data, reducing the required number of transmitted or stored bits per 
incoming bit, then a more elaborate model is needed. 

Developing such an improved model would require finding out more about where the data 
is coming from — a naive application of calculating relative frequencies of n-tuples would 
probably not be the best choice. On the other hand, there are well-known data compression 
schemes that in essence track dependencies in the data and use them for compression in a 
coordinated way. These schemes are called universal data-compression schemes since they 
don’t rely on a probability model. At the same time, they are best analyzed by looking at 
how they perform for various idealized probability models. 

The point of this example is that choosing probability models often depends heavily on how 
the model is to be used. Models more complex than IID binary digits are usually based on 
what is known about the input processes. Measuring relative frequencies and Associating 
them with probabilities is the basic underlying conceptual connection between real-world 
and models, but in practice this is essentially the relationship of last resort. For most of the 
applications we will study, there is a long history of modeling to build on, with experiments 
as needed. 

Example 1.6.3. Fable: In the year 2008, the financial structure of the USA failed and 
the world economy was brought to its knees. Much has been written about the role of greed 
on Wall Street and incompetence in Washington. Another aspect of the collapse, however, 
was a widespread faith in stochastic models for limiting risk. These models encouraged 

38We are not suggesting that distinguishing di↵erent coins for the sake of coin tossing is an important 
problem. Rather, we are illustrating that even in such a simple situation, the assumption of identically 
prepared experiments is questionable and the assumption of independent experiments is questionable. The 
extension to n repetitions of IID experiments is not necessarily a good model for coin tossing. In other 
words, one has to question both the original model and the n-repetition model. 
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people to engage in investments that turned out to be far riskier than the models predicted. 
These models were created by some of the brightest PhD’s from the best universities, but 
they failed miserably because they modeled everyday events very well, but modeled the rare 
events and the interconnection of events poorly. They failed badly by not understanding 
their application, and in particular, by trying to extrapolate typical behavior when their 
primary goal was to protect against highly atypical situations. The moral of the fable is 
that brilliant analysis is not helpful when the modeling is poor; as computer engineers say, 
“garbage in, garbage out.” 

The examples above show that the problems of modeling a real-world experiment are often 
connected with the question of creating a model for a set of experiments that are not 
exactly the same and do not necessarily correspond to the notion of independent repetitions 
within the model. In other words, the question is not only whether the probability model is 
reasonable for a single experiment, but also whether the IID repetition model is appropriate 
for multiple copies of the real-world experiment. 

At least we have seen, however, that if a real-world experiment can be performed many times 
with a physical isolation between performances that is well modeled by the IID repetition 
model, then the relative frequencies of events in the real-world experiment correspond to 
relative frequencies in the idealized IID repetition model, which correspond to probabilities 
in the original model. In other words, under appropriate circumstances, the probabilities 
in a model become essentially observable over many repetitions. 

We will see later that our emphasis on IID repetitions was done for simplicity. There are 
other models for repetitions of a basic model, such as Markov models, that we study later. 
These will also lead to relative frequencies approaching probabilities within the repetition 
model. Thus, for repeated real-world experiments that are well modeled by these repetition 
models, the real world relative frequencies approximate the probabilities in the model. 

1.6.3 Statistical independence of real-world experiments 

We have been discussing the use of relative frequencies of an event A in a repeated real-
world experiment to test Pr{A} in a probability model of that experiment. This can be 
done essentially successfully if the repeated trials correpond to IID trials in the idealized 
experiment. However, the statement about IID trials in the idealized experiment is a state­
ment about probabilities in the extended n-trial model. Thus, just as we tested Pr{A} by 
repeated real-world trials of a single experiment, we should be able to test Pr{A1, . . . , An}
in the n-repetition model by a much larger number of real-world repetitions of n-tuples 
rather than single trials. 

To be more specific, choose two large integers, m and n, and perform the underlying real-
world experiment mn times. Partition the mn trials into m runs of n trials each. For any 
given n-tuple A1, . . . , An of successive events, find the relative frequency (over m trials of 
n tuples) of the n-tuple event A1, . . . , An. This can then be used essentially to test the 
probability Pr{A1, . . . , An} in the model for n IID trials. The individual event probabilities 
can also be tested, so the condition for independence can be tested. 
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The observant reader will note that there is a tacit assumption above that successive n 
tuples can be modeled as independent, so it seems that we are simply replacing a big 
problem with a bigger problem. This is not quite true, since if the trials are dependent 
with some given probability model for dependent trials, then this test for independence will 
essentially reject the independence hypothesis for large enough n. In other words, we can 
not completely verify the correctness of an independence hypothesis for the n-trial model, 
although in principle we could eventually falsify it if it is false. 

Choosing models for real-world experiments is primarily a subject for statistics, and we will 
not pursue it further except for brief discussions when treating particular application areas. 
The purpose here has been to treat a fundamental issue in probability theory. As stated 
before, probabilities are non-observables — they exist in the theory but are not directly 
measurable in real-world experiments. We have shown that probabilities essentially become 
observable in the real-world via relative frequencies over repeated trials. 

1.6.4 Limitations of relative frequencies 

Most real-world applications that are modeled by probability models have such a large 
sample space that it is impractical to conduct enough trials to choose probabilities from 
relative frequencies. Even a shu✏ed deck of 52 cards would require many more than 52! ⇡
8 1067 trials for most of the outcomes to appear even once. Thus relative frequencies can ⇥
be used to test the probability of given individual events of importance, but are usually 
impractical for choosing the entire model and even more impractical for choosing a model 
for repeated trials. 

Since relative frequencies give us a concrete interpretation of what probability means, how­
ever, we can now rely on other approaches, such as symmetry, for modeling. From sym­
metry, for example, it is clear that all 52! possible arrangements of a card deck should be 
equiprobable after shu✏ing. This leads, for example, to the ability to calculate probabilities 
of di↵erent poker hands, etc., which are such popular exercises in elementary probability 
classes. 

Another valuable modeling procedure is that of constructing a probability model where the 
possible outcomes are independently chosen n-tuples of outcomes in a simpler model. More 
generally, most of the random processes to be studied in this text are defined as various 
ways of combining simpler idealized experiments. 

What is really happening as we look at modeling increasingly sophisticated systems and 
studying increasingly sophisticated models is that we are developing mathematical results 
for simple idealized models and relating those results to real-world results (such as relating 
idealized statistically independent trials to real-world independent trials). The association 
of relative frequencies to probabilities forms the basis for this, but is usually exercised only 
in the simplest cases. 

The way one selects probability models of real-world experiments in practice is to use 
scientific knowledge and experience, plus simple experiments, to choose a reasonable model. 
The results from the model (such as the law of large numbers) are then used both to 
hypothesize results about the real-world experiment and to provisionally reject the model 
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when further experiments show it to be highly questionable. Although the results about 
the model are mathematically precise, the corresponding results about the real-world are 
at best insightful hypotheses whose most important aspects must be validated in practice. 

1.6.5 Subjective probability 

There are many useful applications of probability theory to situations other than repeated 
trials of a given experiment. When designing a new system in which randomness (of the type 
used in probability models) is hypothesized, one would like to analyze the system before 
actually building it. In such cases, the real-world system does not exist, so indirect means 
must be used to construct a probability model. Often some sources of randomness, such as 
noise, can be modeled in the absence of the system. Often similar systems or simulation 
can be used to help understand the system and help in formulating appropriate probability 
models. However, the choice of probabilities is to a certain extent subjective. 

Another type of situation, of which a canonic example is risk analysis for nuclear reac­
tors, deals with a large number of very unlikely outcomes, each catastrophic in nature. 
Experimentation clearly cannot be used to establish probabilities, and it is not clear that 
probabilities have any real meaning here. It can be helpful, however, to choose a probability 
model on the basis of subjective beliefs which can be used as a basis for reasoning about the 
problem. When handled well, this can at least make the subjective biases clear, leading to 
a more rational approach to the problem. When handled poorly, it can hide the arbitrary 
nature of possibly poor decisions. 

We will not discuss the various, often ingenious methods to choose subjective probabilities. 
The reason is that subjective beliefs should be based on intensive and long term exposure 
to the particular problem involved; discussing these problems in abstract probability terms 
weakens this link. We will focus instead on the analysis of idealized models. These can 
be used to provide insights for subjective models, and more refined and precise results for 
objective models. 

1.7 Summary 

This chapter started with an introduction into the correspondence between probability the­
ory and real-world experiments involving randomness. While almost all work in probability 
theory works with established probability models, it is important to think through what 
these probabilities mean in the real world, and elementary subjects rarely address these 
questions seriously. 

The next section discussed the axioms of probability theory, along with some insights about 
why these particular axioms were chosen. This was followed by a review of conditional 
probabilities, statistical independence, random variables, stochastic processes, and expec­
tations. The emphasis was on understanding the underlying structure of the field rather 
than reviewing details and problem solving techniques. 

This was followed by a fairly extensive treatment of the laws of large numbers. This involved 
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a fair amount of abstraction, combined with mathematical analysis. The central idea is 
that the sample average of n IID rv’s approaches the mean with increasing n. As a special 
case, the relative frequency of an event A approaches Pr{A}. What the word approaches 
means here is both tricky and vital in understanding probability theory. The strong law of 
large numbers and convergence WP1 requires mathematical maturity, and is postponed to 
Chapter 4 where it is first used. 

The final section came back to the fundamental problem of understanding the relation 
between probability theory and randomness in the real-world. It was shown, via the laws 
of large numbers, that probabilities become essentially observable via relative frequencies 
calculated over repeated experiments. 

There are too many texts on elementary probability to mention here, and most of them 
serve to give added understanding and background to the material in this chapter. We 
recommend Bertsekas and Tsitsiklis [2], both for a careful statement of the fundamentals 
and for a wealth of well-chosen and carefully explained examples. 

Texts that cover similar material to that here are [16] and [11]. Kolmogorov [14] is readable 
for the mathematically mature and is also of historical interest as the translation of the 1933 
book that first put probability on a firm mathematical basis. Feller [7] is the classic extended 
and elegant treatment of elementary material from a mature point of view. Rudin [17] is 
an excellent text on measure theory for those with advanced mathematical preparation. 
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1.8 Exercises 

Exercise 1.1. Consider a sequence A1, A2, . . . of events each of which have probability 
zero. 

a) Find Pr{
Pm

n=1 An} and find limm!1 Pr{
Pm

n=1 An}. What you have done is to show 
that the sum of a countably infinite set of numbers each equal to 0 is perfectly well defined 
as 0. 

b) For a sequence of possible phases, a1, a2, . . . between 0 and 2⇡, and a sequence of single­
ton events, An = {an}, find Pr{

S
n An} assuming that the phase is uniformly distributed. 

c) Now let An be the empty event � for all n. Use (1.1) to show that Pr{�} = 0. 

Exercise 1.2. Let A1 and A2 be arbitrary events and show that Pr{A1 
S

A2}+Pr{A1A2} = 
Pr{A1} + Pr{A2}. Explain which parts of the sample space are being double counted on 
both sides of this equation and which parts are being counted once. 

Exercise 1.3. Let A1, A2, . . . , be a sequence of disjoint events and assume that Pr{An} = 
2�n�1 for each n � 1. Assume also that ⌦ = 

S1 An. n=1 

a) Show that these assumptions violate the axioms of probability. 

b) Show that if (1.3) is substituted for the third of those axioms, then the above assumptions 
satisfy the axioms. 

This shows that the countable additivity of Axiom 3 says something more than the finite 
additivity of (1.3). 

Exercise 1.4. This exercise derives the probability of an arbitrary (non-disjoint) union of 
events, derives the union bound, and derives some useful limit expressions. 

a) For 2 arbitrary events A1 and A2, show that 

A1 

[
A2 = A1 

[
(A2�A1) where A2�A1 = A2A1

c . 

Show that A1 and A2 � A1 are disjoint Hint: This is what Venn diagrams were invented 
for. 

b) For an arbitrary sequence of events, {An; n � 1}, let B1 = A1 and for each n � 2 define 
Bn = An � 

Sn�1 Aj . Show that B1, B2, . . . , are disjoint events and show that for each j=1 
m � 2, 

Sm An = 
Sn Bn. Hint: Use induction. n=1 n=1 

c) Show that 

Pr
n[1 

An

o 
= Pr

n[1 
Bn

o 
= 

X1 
Pr{Bn} . 

n=1 n=1 n=1 

Hint: Use the axioms of probability for the second equality. 
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d) Show that for each n, Pr{Bn}  Pr{An}. Use this to show that 

Pr
n[1 

An

o 
 

X1 
Pr{An} . 

n=1 n=1 

e) Show that Pr{
S1

n=1 An} = limm!1 Pr{
Sm

n=1 An}. Hint: Combine parts c) and b).. 
Note that this says that the probability of a limit of unions is equal to the limit of the 
probabilities. This might well appear to be obvious without a proof, but you will see 
situations later where similar appearing interchanges cannot be made. 

f) Show that Pr{
T1 An} = limn!1 Pr{

Tn Ai}. Hint: Remember deMorgan’s equali­n=1 i=1 
ties. 

Exercise 1.5. Consider a sample space of 8 equiprobable sample points and let A1, A2, A3 

be three events each of probability 1/2 such that Pr{A1A2A3} = Pr{A1} Pr{A2} Pr{A3}. 

a) Create an example where Pr{A1A2} = Pr{A1A3} = 1 but Pr{A2A3} = 1 . Hint: Make 4 8 
a table with a row for each sample point and a column for each event and try di↵erent ways 
of assigning sample points to events (the answer is not unique). 

b) Show that, for your example, A2 and A3 are not independent. Note that the definition 
of statistical independence would be very strange if it allowed A1, A2, A3 to be independent 
while A2 and A3 are dependent. This illustrates why the definition of independence requires 
(1.13) rather than just (1.14). 

Exercise 1.6. Suppose X and Y are discrete rv’s with the PMF pXY (xi, yj). Show (a 
picture will help) that this is related to the joint distribution function by 

pXY (xi, yj) = lim [F(xi, yj ) � F(xi � �, yj ) � F(xi, yj � �) + F(xi � �, yj � �)] . 
�>0,�!0 

Exercise 1.7. A variation of Example 1.3.2 is to let M be a random variable that takes 
on both positive and negative values with the PMF 

1 
pM (m) = 

2|m| (|m| + 1)
. 

In other words, M is symmetric around 0 and |M | has the same PMF as the nonnegative 
rv N of Example 1.3.2. 

a) Show that 
P

m�0 mpM (m) = 1 and 
P

m<0 mpM (m) = �1. (Thus show that the 
expectation of M not only does not exist but is undefined even in the extended real number 
system.) 

b) Suppose that the terms in 
P1 mpM (m) are summed in the order of 2 positive terms m=�1

for each negative term (i.e., in the order 1, 2, �1, 3, 4, �2, 5, ). Find the limiting value of · · · 
the partial sums in this series. Hint: You may find it helpful to know that 

lim 

Xn

i=1 

1 
i 
� 
Z 

1 

n 

x 
1 

dx

� 
= �, 

n!1 
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where � is the Euler-Mascheroni constant, � = 0.57721 .· · · 

c) Repeat part b) where, for any given integer k > 0, the order of summation is k positive 
terms for each negative term. 

FcExercise 1.8. a) For any given rv Y , express E [|Y |] in terms of 
R
y<0 FY (y) dy and 

R
y�0 (y) dy.Y 

b) Show that E [|Y � ↵|] is minimized by setting ↵ equal to the median of Y (i.e., the value 
of Y for which FY (y) = 1/2). Hint: Use a graphical argument. 

Exercise 1.9. Let X be a rv with distribution function FX (x). Find the distribution 
function of the following rv’s. 

a) The maximum of n IID rv’s, each with distribution function FX (x). 

b) The minimum of n IID rv’s, each with distribution FX (x). 

c) The di↵erence of the rv’s defined in a) and b); assume X has a density fX (x). 

Exercise 1.10. Let X and Y be rv’s in some sample space ⌦ and let Z = X + Y , i.e., for 
each ! 2 ⌦, Z(!) = X(!) + Y (!). 

a) Show that the set of ! for which Z(!) = ±1 has probability 0. 

b) To show that Z = X +Y is a rv, we must show that for each real number ↵, the set {! 2
⌦ : X(!) + Y (!)  ↵} is an event. We proceed indirectly. For an arbitrary positive integer 
n and an arbitrary integer k, let B(n, k) = {! : X(!)  k↵/n} 

T
{Y (!)  (n + 1 � k)↵/n}. 

Let D(n) = 
S

k B(n, k) and show that D(n) is an event. 

c) On a 2 dimensional sketch for a given ↵, show the values of X(!) and Y (!) for which 
! 2 D(n). Hint: This set of values should be bounded by a staircase function. 

d) Show that 

{! : X(!) + Y (!)  ↵} = 
\

B(n) 
n 

Explain why this shows that Z = X + Y is a rv. 

Exercise 1.11. a) Let X1,X2, . . . ,Xn be rv’s with expected values X1, . . . , Xn. Show 
that E [X1 + + Xn] = X1 + + Xn. You may assume that the rv’s have a joint density · · · · · · 
function, but do not assume that the rv’s are independent. 

b) Now assume that X1, . . . ,Xn are statistically independent and show that the expected 
value of the product is equal to the product of the expected values. 

c) Again assuming that X1, . . . ,Xn are statistically independent, show that the variance 
of the sum is equal to the sum of the variances. 
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Exercise 1.12. (Stieltjes integration) a) Let h(x) = u(x) and FX (x) = u(x) where u(x) is 
the unit step, i.e., u(x) = 0 for �1 < x < 0 and u(x) = 1 for x � 0. Using the definition of 
the Stieltjes integral in Footnote 22, show that 

R
�
1
1 h(x)dFX (x) does not exist. Hint: Look 

at the term in the Riemann sum including x = 0 and look at the range of choices for h(x) in 
that interval. Intuitively, it might help initially to view dFX (x) as a unit impulse at x = 0. 

b) Let h(x) = u(x � a) and FX (x) = u(x � b) where a and b are in (�1, +1). Show that R
�
1
1 h(x)dFX (x) exists if and only if a =6 b. Show that the integral has the value 1 for a < b 

and the value 0 for a > b. Argue that this result is still valid in the limit of integration over 
(�1, 1). 

c) Let X and Y be independent discrete rv’s, each with a finite set of possible values. Show 
that 

R1 FX (z � y)dFY (y), defined as a Stieltjes integral, is equal to the distribution of 
Z = X

�1
+ Y at each z other than the possible sample values of Z, and is undefined at each 

sample value of Z. Hint: Express FX and FY as sums of unit steps. Note: This failure of 
Stieltjes integration is not a serious problem; FZ (z) is a step function, and the integral is 
undefined at its points of discontinuity. We automatically define FZ (z) at those step values 
so that FZ is a distribution function (i.e., is continuous from the right). This problem does 
not arise if either X or Y is continuous. 

Exercise 1.13. Let X1,X2, . . . ,Xn, . . . be a sequence of IID continuous rv’s with the 
common probability density function fX (x); note that Pr{X=↵} = 0 for all ↵ and that 
Pr{Xi =Xj } = 0 for all i =6 j. For n � 2, define Xn as a record-to-date of the sequence if 
Xn > Xi for all i < n. 

a) Find the probability that X2 is a record-to-date. Use symmetry to obtain a numerical 
answer without computation. A one or two line explanation should be adequate. 

b) Find the probability that Xn is a record-to-date, as a function of n � 1. Again use 
symmetry. 

c) Find a simple expression for the expected number of records-to-date that occur over 
the first m trials for any given integer m. Hint: Use indicator functions. Show that this 
expected number is infinite in the limit m !1. 

Exercise 1.14. (Continuation of Exercise 1.13) 

a) Let N1 be the index of the first record-to-date in the sequence. Find Pr{N1 > n} for 
each n � 2. Hint: There is a far simpler way to do this than working from part b) in 
Exercise 1.13. 

b) Show that N1 is a rv. 

c) Show that E [N1] = 1. 

d) Let N2 be the index of the second record-to-date in the sequence. Show that N2 is a rv. 
Hint: You need not find the distribution function of N2 here. 

e) Contrast your result in part c) to the result from part c) of Exercise 1.13 saying that the 
expected number of records-to-date is infinite over an an infinite number of trials. Note: 
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this should be a shock to your intuition — there is an infinite expected wait for the first of 
an infinite sequence of occurrences, each of which must eventually occur. 

Exercise 1.15. (Another direction from Exercise 1.13) a) For any given n � 2, find the 
probability that Xn and Xn+1 are both records-to-date. Hint: The idea in part b) of 1.13 
is helpful here, but the result is not. 

b) Is the event that Xn is a record-to-date statistically independent of the event that Xn+1 

is a record-to-date? 

c) Find the expected number of adjacent pairs of records-to-date over the sequence X1,X2, . . . . 
Hint: A helpful fact here is that 1 = 1 1 

n(n+1) n � n+1 . 

Exercise 1.16. a) Assume that X is a nonnegative discrete rv taking on values a1, a2, . . . , 
and let Y = h(X) for some nonnegative function h. Let bi = h(ai), i�1 be the ith value 
taken on by Y . Show that E [Y ] = 

P
i bipY (bi) = 

P
i h(ai)pX (ai). Find an example where 

E [X] exists but E [Y ] = 1. 

b) Let X be a nonnegative continuous rv with density fX (x) and let h(x) be di↵erentiable, 
nonnegative, and strictly increasing in x. Let A(�) = 

P
n h(n�)[F(n�) � F(n� � �)], i.e., 

A(�) is the �th order approximation to the Stieltjes integral 
R 

h(x)dF(x). Show that if 
A(1) < 1, then A(2�k)  A(2k�1) < 1. Show from this that 

R 
h(x) dF(x) converges to 

a finite value. Note: this is a very special case, but it can be extended to many cases of 
interest. It seems better to consider these convergence questions as required rather than 
consider them in general. 

Exercise 1.17. a) Consider a positive, integer-valued rv whose distribution function is 
given at integer values by 

2 
FY (y) = 1 � 

(y + 1)(y + 2) 
for integer y > 0. 

Use (1.35) to show that E [Y ] = 2. Hint: Note the PMF given in (1.31).


b) Find the PMF of Y and use it to check the value of E [Y ].


c) Let X be another positive, integer-valued rv. Assume its conditional PMF is given by


1 
pX|Y (x|y) = 

y 
for 1  x  y. 

Find E [X | Y = y] and show that E [X] = 3/2. Explore finding pX (x) until you are con­
vinced that using the conditional expectation to calculate E [X] is considerably easier than 
using pX (x). 

d) Let Z be another integer-valued rv with the conditional PMF 

pZ|Y (z|y) = 
y

1 
2 for 1  z  y 2 . 

Find E [Z | Y = y] for each integer y � 1 and find E [Z]. 
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Exercise 1.18. a) Show that, for uncorrelated rv’s, the expected value of the product is 
equal to the product of the expected values (by definition, X and Y are uncorrelated if 
E 
⇥
(X � X)(Y � Y )

⇤ 
= 0). 

b) Show that if X and Y are uncorrelated, then the variance of X + Y is equal to the 
variance of X plus the variance of Y . 

c) Show that if X1, . . . ,Xn are uncorrelated, the the variance of the sum is equal to the 
sum of the variances. 

d) Show that independent rv’s are uncorrelated. 

e) Let X,Y be identically distributed ternary valued random variables with the PMF 
pX (�1) = pX (1) = 1/4; pX (0) = 1/2. Find a simple joint probability assignment such 
that X and Y are uncorrelated but dependent. 

f) You have seen that the moment generating function of a sum of independent rv’s is equal 
to the product of the individual moment generating functions. Give an example where this 
is false if the variables are uncorrelated but dependent. 

Exercise 1.19. Suppose X has the Poisson PMF, pX (n) = �n exp(��)/n! for n � 0 and 
Y has the Poisson PMF, pY (m) = µn exp(�µ)/n! for n � 0. Assume that X and Y are 
independent. Find the distribution of Z = X + Y and find the conditional distribution of 
Y conditional on Z = n. 

Exercise 1.20. a) Suppose X, Y and Z are binary rv’s, each taking on the value 0 with 
probability 1/2 and the value 1 with probability 1/2. Find a simple example in which 
X, Y , Z are statistically dependent but are pairwise statistically independent (i.e., X, Y 
are statistically independent, X, Z are statistically independent, and Y , Z are statistically 
independent). Give pXY Z (x, y, z) for your example. Hint: In the simplest examle, only 4 
of the joint values for x, y, z have positive probabilities. 

b) Is pairwise statistical independence enough to ensure that 

E 
hYn 

Xi

i 
= 
Yn 

E [Xi]
i=1 i=1 

for a set of rv’s X1, . . . ,Xn? 

Exercise 1.21. Show that E [X] is the value of ↵ that minimizes E 
⇥
(X � ↵)2

⇤
. 

Exercise 1.22. For each of the following random variables, find the interval (r�, r+) over 
which the moment generating function g(r) exists. Determine in each case whether gX (r) 
exists at the end points r and r+. For parts a) and b) you should also find and sketch 
g(r). For part c), g(r) has no closed form. 

a) Let �, ✓, be positive numbers and let X have the density 

1 1 
fX (x) = 

2
� exp(��x); x � 0; fX (x) = 

2
✓ exp(✓x); x < 0. 
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b) Let Y be a Gaussian random variable with mean m and variance �2 . 

c) Let Z be a nonnegative random variable with density 

fZ (z) = k(1 + z)�2 exp(��z); z � 0. 

where � > 0 and k = [
R
z�0(1 + z)2 exp(�az)dz]�1 . Hint: Do not try to evaluate gZ (r). 

Instead, investigate values of r for which the integral is finite and infinite. 

Exercise 1.23. Recall that the MGF of the nonnegative exponential rv with density e�x 

is (1 � r)�1 for r < r+ = 1. In other words, g(r+) does not exist and limr!r+ g(r) = 1, 
where the limit is over r < r+. In this exercise, you are to assume that X is an arbitrary 
rv for which g(r+) does not exist and show that limr!r+ g(r) = 1 where the limit is over 
r < r+. 

a) Explain why 

lim 
Z A 

e xr+ dF(x) = 1. 
0A!1 

b) Show that for any ✏ > 0 and any A > 0, 

xr+ dF(x).g(r+ � ✏) � e�✏A 
Z A 

e 
0 

c) Choose A = 1/✏ and show that 

lim g(r+ � ✏) = 1. 
✏!0 

Exercise 1.24. a) Assume that the MGF of the random variable X exists (i.e., is finite) 
in the interval (r�, r+), r� < 0 < r+, and assume r� < r < r+ throughout. For any finite 
constant c, express the moment generating function of X � c, i.e., g(X�c)(r), in terms of 
gX (r) and show that g(X�c)(r) exists for all r in (r�, r+). Explain why g(

00
X�c)(r) � 0. 

b) Show that g (r) = [g (r) � 2cg0 (r) + c2gX (r)]e�rc .(
00
X�c)

00
XX 

c) Use a) and b) to show that g00 (r)gX (r) � [g0 (r)]2 � 0, Let �X (r) = ln gX (r) and show X X 
that �00 (r) � 0. Hint: Choose c = gX (r)/gX (r).X 

0

d) Assume that X is non-deterministic, i.e., that there is no value of ↵ such that Pr{X = ↵} = 
1. Show that the inequality sign “�” may be replaced by “>” everywhere in a), b) and c). 

Exercise 1.25. A computer system has n users, each with a unique name and password. 
Due to a software error, the n passwords are randomly permuted internally (i.e. each of 
the n! possible permutations are equally likely. Only those users lucky enough to have had 
their passwords unchanged in the permutation are able to continue using the system. 

a) What is the probability that a particular user, say user 1, is able to continue using the 
system? 

b) What is the expected number of users able to continue using the system? Hint: Let Xi 

be a rv with the value 1 if user i can use the system and 0 otherwise. 
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Exercise 1.26. Suppose the rv X is continuous and has the distribution function FX (x). 
Consider another rv Y = FX (X). That is, for each sample point ! such that X(!) = x, we 
have Y (!) = FX (x). Show that Y is uniformly distributed in the interval 0 to 1. 

Exercise 1.27. Let Z be an integer valued rv with the PMF pZ (n) = 1/k for 0  n  k�1. 
Find the mean, variance, and moment generating function of Z. Hint: An elegant way to 
do this is to let U be a uniformly distributed continuous rv over (0, 1] that is independent 
of Z. Then U + Z is uniform over (0, k]. Use the known results about U and U + Z to find 
the mean, variance, and MGF for Z. 

Exercise 1.28. a) Let Y be a nonnegative rv and y > 0 be some fixed number. Let A be 
the event that Y � y. Show that y IA  Y (i.e., that this inequality is satisfied for every 
! 2 ⌦). 

b) Use your result in part a) to prove the Markov inequality. 

Exercise 1.29. a) Show that for any 0 < k < n ✓ 
n 

✓
n
◆

n � k
. 

k + 1 

◆ 
 

k k 

b) Extend part a) to show that, for all `  n � k, ✓ 
n 

✓
n
◆

n � k 
�` 

. 
k + ` 

◆ 
 

k k 

c) Let p̃ = k/n and q̃ = 1 � p̃. Let Sn be the sum of n binary IID rv’s with pX (0) = q and 
pX (1) = p. Show that for all `  n � k, 

` qp 
pSn (k + `)  pSn (k) 

✓
˜
˜

◆ 
. 

pq 

pq d) For k/n > p, show that Pr{Sn � kn}  p̃
˜
�p pSn (k). 

e) Now let ` be fixed and k = dnp̃e p such that 1 > ˜ Argue that as n !1,for fixed ˜ p > p. 
` qp p̃q 

pSn (k + `) pSn (k) 
✓

˜
◆ 

and Pr{Sn � kn} ⇠ pSn (k). 
pq p � p

⇠ 
˜ ˜

Exercise 1.30. A sequence {an; n � 1} of real numbers has the limit 0 if for all ✏ > 0, 
there is an m(✏) such that |an|  ✏ for all n � m(✏). Show that the sequences in parts a) 
and b) below satisfy limn!1 an = 0 but the sequence in part c) does not have a limit. 

a) an = ln(ln(
1 
n+1)) 

b) an = n10 exp(�n) 

c) an = 1 for n = 10` for each positive integer ` and an = 0 otherwise. 

d) Show that the definition can be changed (with no change in meaning) by replacing ✏ 
with either 1/k or 2�k for every positive integer k. 
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Exercise 1.31. Consider the moment generating function of a rv X as consisting of the 
following two integrals: 

gX (r) = 
Z 0 

e rxdF(x) + 
Z 1 

e rxdF(x). 
�1 0 

In each of the following parts, you are welcome to restrict X to be either discrete or con­
tinuous. 

a) Show that the first integral always exists (i.e., is finite) for r � 0 and that the second 
integral always exists for r  0. 

b) Show that if the second integral exists for a given r1 > 0, then it also exists for all r in 
the range 0  r  r1. 

c) Show that if the first integral exists for a given r2 < 0, then it also exists for all r in the 
range r2  r  0. 

d) Show that the range of r over which gX (r) exists is an interval from some r2  0 to 
some r1 � 0 (the interval might or might not include each endpoint, and either or both end 
point might be 0 or 1). 

e) Find an example where r1 = 1 and the MGF does not exist for r = 1. Find another 
example where r1 = 1 and the MGF does exist for r = 1. Hint: Consider fX (x) = e�x for x �
0 and figure out how to modify it to fY (y) so that 

R1 eyfY (y) dy < 1 but 
R1 ey+✏yfY (y) = 0 0 

1 for all ✏ > 0. 

Exercise 1.32. Let {Xn; n � 1} be a sequence of independent but not identically dis­
tributed rv’s. We say that the weak law of large numbers (WLLN) holds for this sequence 
if for all ✏ > 0 

lim Pr
⇢���S

n 
n � 

E [
n

Sn] ��� � ✏

� 
= 0 where Sn = X1 + X2 + · · · + Xn. (WL). 

n!1 

a) Show that the WLLN holds if there is some constant A such that �2  A for all n.Xn 

b) Suppose that �2  An1�↵ for some ↵ < 1 and for all n. Show that the WLLN holdsXn 

in this case. 

Exercise 1.33. Let {Xi; i � 1} be IID binary rv’s. Let Pr{Xi = 1} = �, Pr{Xi = 0} = 
1 � �. Let Sn = X1 + + Xn. Let m be an arbitrary but fixed positive integer. Think!· · · 
then evaluate the following and explain your answers: 

a) limn!1 
P

i:n��min�+m Pr{Sn = i} 

b) limn!1 
P

i:0in�+m Pr{Sn = i} 

c) limn!1 
P

i:n(��1/m)in(�+1/m) Pr{Sn = i}. 
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Exercise 1.34. Use the Berry-Esseen result, (1.83), to prove the WLLN under the restric­
tion that E 

⇥
|X|3

⇤ 
exists. Note: This is not intended as a reasonable way to prove the 

WLLN. Rather, it is to better understand what the convergence result of (1.83) implies. It 
appears that the CLT, without something extra about convergence, does not establish the 
WLLN. 

Exercise 1.35. (Details in the proof of Theorem 1.5.3) 

a) Show that if X1,X2, . . . , are IID, then the truncated versions X̆1, X̆2, . . . , are also IID. 

˘b) Show that each Xi has a finite mean E 
h
X̆
i 

and finite variance �2 . Show that the 
X̆

variance is upper bounded by the second moment around the original mean X, i.e., show 

that �2 | ˘ |2
i
. 

X̆
 E 

h
X � E [X] 

c) Assume that X̆i is Xi truncated to X ± b. Show that |X̆ � X|  b and that |X̆ � X| 
˘|X � X|. Use this to show that �

X 
2
˘  bE 

h
|X � X|

i 
 2bE [|X|]. 

d) Let S̆n = X̆1 + + X̆n and show that for any ✏ > 0,· · · 

S̆n ✏ 8bE [ X ]
Pr

(����
n 
� E 

h
X̆
i���� � 

2

) 
 

n✏

|
2 

|
. 

e) Sketch the form of FX̆�X (x) and use this, along with (1.35), to show that for all su�­

ciently large b, 
���E 

h
X̆ � X

i ���  ✏/2. Use this to show that 

���
S̆

n 
n ���  

8bE 
n

[
✏2 

X ]
Pr

(��
� E [X]

��
� ✏

) 
| |

for all large enough b. 

f) Use the following equation to justify (1.94). 

Pr
⇢ ��
��Sn � E [X] ��

��
> ✏

� 
= Pr

⇢��
��Sn � E [X] ��

��
> ✏ 

\ 
Sn = S̆n 

� 
n n 

Sn+ Pr
⇢ ���� n 

� E [X] 
���� > ✏ 

\ 
Sn 6= S̆n 

�
. 

Exercise 1.36. Let {Xi; i � 1} be IID rv’s with mean 0 and infinite variance. Assume 
that E 

⇥
|Xi|1+h

⇤ 
= � for some given h, 0 < h < 1 and some finite �. Let Sn = X1 + · · ·+Xn. 

a) Show that Pr{|Xi| � y}  � y�1�h 

b : Xi � b
8

b) Let {X̆i; i � 1} be truncated variables X̆i = 
< 

Xi : �b  Xi  b : �b : Xi  �b 

2�b1�h
Show that E 

h
X̆2

i 
 1�h Hint: For a nonnegative rv Z, E 

⇥
X2

⇤ 
= 
R
0
1 2 z Pr{Z � z} dz 

(you can establish this, if you wish, by integration by parts). 
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c) Let S̆n = X̆1 + . . . + X̆n. Show that Pr
n
Sn =6 S̆n

o 
 n�b�1�h 

Sn nd) Show that Pr
���

n 

�� � ✏  � 
h

(1
2
�
b
h

1�

)n

h 

✏2 + 
b1+h 

i
. 

e) Optimize your bound with respect to b. How fast does this optimized bound approach 
0 with increasing n? 

Exercise 1.37. (MS convergence ! convergence in probability) Assume that {Zn; n �
1} is a sequence of rv’s and ↵ is a number with the property that limn!1 E 

⇥
(Zn � ↵)2

⇤ 
= 0. 

a) Let ✏ > 0 be arbitrary and show that for each n � 0, 

Pr{|Zn � ↵| � ✏}  
E 
⇥
(Zn 

✏2
� ↵)2

⇤ 
. 

b) For the ✏ above, let � > 0 be arbitrary. Show that there is an integer m such that 
E 
⇥
(Zn � ↵)2

⇤ 
 ✏2� for all n � m. 

c) Show that this implies convergence in probability. 

Exercise 1.38. Let X1,X2 . . . , be a sequence of IID rv’s each with mean 0 and variance 
�2. Let Sn = X1 + +Xn for all n and consider the random variable Sn/�

p
n�S2n/�

p
2n.· · ·

Find the limiting distribution function for this sequence of rv0s as n ! 1. The point of 
this exercise is to see clearly that the distribution function of Sn/�

p
n is converging but 

that the sequence of rv’s is not converging. 

Exercise 1.39. A town starts a mosquito control program and the rv Zn is the number 
of mosquitos at the end of the nth year (n = 0, 1, 2, . . . ). Let Xn be the growth rate of 
mosquitos in year n; i.e., Zn = XnZn�1; n � 1. Assume that {Xn; n � 1} is a sequence of 
IID rv’s with the PMF Pr{X=2} = 1/2; Pr{X=1/2} = 1/4; Pr{X=1/4} = 1/4. Suppose 
that Z0, the initial number of mosquitos, is some known constant and assume for simplicity 
and consistency that Zn can take on non-integer values. 

a) Find E [Zn] as a function of n and find limn!1 E [Zn]. 

b) Let Wn = log2 Xn. Find E [Wn] and E [log2(Zn/Z0)] as a function of n. 

c) There is a constant ↵ such that limn!1(1/n)[log2(Zn/Z0)] = ↵ with probability 1. Find 
↵ and explain how this follows from the strong law of large numbers. 

d) Using (c), show that limn!1 Zn = � with probability 1 for some � and evaluate �. 

e) Explain carefully how the result in (a) and the result in (d) are possible. What you 
should learn from this problem is that the expected value of the log of a product of IID rv’s 
might be more significant that the expected value of the product itself. 

Exercise 1.40. Use Figure 1.7 to verify (1.55). Hint: Show that yPr{Y �y}  
R
z�y zdFY (z) 

and show that limy!1 
R
z�y zdFY (z) = 0 if E [Y ] is finite. 



68 CHAPTER 1. INTRODUCTION AND REVIEW OF PROBABILITY 

Exercise 1.41. Show that 
Q

m�n(1 � 1/m) = 0. Hint: Show that 

1 1 1
✓

1 � 

◆ 
= exp 

✓
ln 

✓
1 � 

◆◆ 
 exp 

✓
� 

◆
. 

m m m 

Exercise 1.42. Consider a discrete rv X with the PMF 

pX (�1) = (1 � 10�10)/2, 
pX (1) = (1 � 10�10)/2, 

pX (1012) = 10�10 . 

a) Find the mean and variance of X. Assuming that {Xm; m � 1} is an IID sequence with 
the distribution of X and that Sn = X1 + + Xn for each n, find the mean and variance · · · 
of Sn. (no explanations needed.) 

b) Let n = 106 and describe the event {Sn  106} in words. Find an exact expression for 
Pr
�
Sn  106 = FSn (106). 

c) Find a way to use the union bound to get a simple upper bound and approximation of 
1 � FSn (106). 

d) Sketch the distribution function of Sn for n = 106 . You can choose the horizontal axis 
for your sketch to go from �1 to +1 or from �3 ⇥ 103 to 3 ⇥ 103 or from �106 to 106 or 
from 0 to 1012, whichever you think will best describe this distribution function. 

1010 

can be approximated by e�1 . Sketch the distribution function of Sn for n = 1010, using a 
horizontal axis going from slightly below 0 to slightly more than 2 1012 . Hint: First view 
Sn as conditioned on an appropriate rv. 

⇥ 

e) Now let n = . Give an exact expression for Pr
�
Sn  1010 and show that this 

d) Can you make a qualitative statement about how the distribution function of a rv X 
a↵ects the required size of n before the WLLN and the CLT provide much of an indication 
about Sn. 
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