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Solutions to practice problem set 12 

Note: There is a minor error in the statement of Exercise 7.21, part b. The last equation 
of that part should be ZJ = −(−2)n(2n − 1)/(n2 − n). The error is corrected in the 
statement here. 

Exercise 7.6 Consider a binary hypothesis testing problem where H is 0 or 1 and a one 
dimensional observation Y is given by Y = H + U where U is uniformly distributed over 
[-1, 1] and is independent of H. 

a) Find fY H (y | 0), fY H (y | 1) and the likelihood ratio Λ(y). | |

Solution: Note that fY H is simply the density of U shifted by H, i.e., 
Ω

|
 
1/2; −1 ≤ y ≤ 1 

fY  | 0) = f|H (y 0; elsewhere Y H(y | 1) = |   

Ω 
1/2; 0 ≤ y ≤ 2 

.
0; elsewhere 

The likelihood ratio Λ(y) is defined only for −1 ≤ y 
     

≤ 2 since neither conditional density 
is nonzero outside this range.




 1; −1 ≤ y < 0 f  
(y) = Y |H (y | 0)

Λ = 1; 0 
fY H (y 1) 

≤ y 
     

≤ 1 
| | 0; 1 < y ≤ 2 

b) Find the threshold test at η for each η, 0 <



η < 1 and evaluate the conditional error 
probabilities, q0(η) and q1(η). 

Solution: Since Λ(y) has finitely many (3) possible values, all values of η between any 
adjacent pair lead to the same threshold test. Thus, for η > 1, Λ(y) > η, leads to the 
decision ĥ = 0 if and only if (iff) Λ(y) = 1, i.e., iff −1 ≤ y < 0. For η = 1, the rule is 
the same, Λ(y) > η iff Λ(y) = 1, but here there is a ‘don’t care’ case Λ(y) = 1 where 
0 ≤ y ≤ 1 leads to ĥ = 1 simply because of the convention for the equal case taken in 
(7.14). Finally for η < 1, Λ(Y ) > η iff −1 ≤ y ≤ 1. 

Consider q0(η) (the error probability conditional on H = 0 when a threshold η is used) 
for η > 1. Then ĥ = 0 iff −1 ≤ y < 0, and thus an error occurs (for H = 0) iff y  0. 
Thus q0(η) = Pr{Y ≥ 0 | H = 0} = 1/2. An error occurs given H = 1 (still 

≥
assuming 

η > 1) iff −1 ≤ y < 0. These values of y are impossible under H = 1 so q1(η) = 0. These 
error probabilities are the same if η = 1 because of the handling of the don’t care cases. 

For η < 1, ĥ = 0 iff y ≤ 1. Thus q0(η) = Pr{Y > 1 | H = 0} = 0. Also q1(η) = 
Pr{Y ≤ 1 | H = 1} = 1/2. 

c) Find the error curve u(α) and explain carefully how u(0) and u(1/2) are found (hint: 
u(0) = 1/2). 
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q1(η) 1/2 1 
d) Describe a decision rule for which the error probability under each hypothesis is 1/4. 
You need not use a randomized rule, but you need to handle the don’t-care cases under 
the threshold test carefully. 

Solution: The don’t care cases arise for 0 ≤ y ≤ 1 when η = 1. With the decision rule of 
(7.14), these don’t care cases result in ĥ = 1. If half of those don’t care cases are decided 
as ĥ = 0, then the error probability given H = 1 is increased to 1/4 and that for H = 0 
is decreased to 1/4. This could be done by random choice, or just as easily, by mapping 
y > 1/2 into ĥ = 1 and y ≤ 1/2 into ĥ = 0. 

Exercise 7.12 a) Use Wald’s equality to show that if X = 0, then E [SJ ] = 0 where J is 
the time of threshold crossing with one threshold at α > 0 and another at β < 0. 

Solution: Wald’s equality holds since E [|J |] < 1, which follows from Lemma 7.5.1. 
Thus E [SJ ] = X̄E [J ]. Since X̄ = 0, it follows that E [SJ ] = 0. 

b) Obtain an expression for Pr{SJ ≥ α}. Your expression should involve the expected 
value of SJ conditional on crossing the individual thresholds (you need not try to calculate 
these expected values). 

Solution: Writing out E [SJ ] = 0 in terms of conditional expectations, 

E [SJ ]	 = Pr{SJ ≥ α} E [SJ | SJ ≥ α] + Pr{SJ ≤ β} E [SJ | SJ ≤ β] 

= Pr{SJ ≥ α} E [SJ | SJ ≥ α] + [1 − Pr{SJ ≥ α}]E [SJ | SJ ≤ β] 

Using E [SJ ] = 0, we can solve this for Pr{SJ ≥ α}, 

E [ S
Pr{SJ ≥ α

− | S ≤ β] 
	 }  J J =

E [−SJ	 | SJ ≤ β] + E [SJ | SJ ≥ α] 

c) Evaluate your expression for the case of a simple random walk. 

Solution: A simple random walk moves up or down only by unit steps, Thus if α and β are 
integers, there can be no overshoot when a threshold is crossed. Thus E [SJ | SJ ≥ α] = α 
and E [SJ | SJ ≤ β] = β. Thus Pr{S β

J ≥ α} = | |         |β|+α . If α is non-integer, then a positive
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Solution: We have seen that each η ≥ 1 maps into the pair of error probabilities 
(q0(η), q1(η)) = (1/2, 0). Similarly, each η < 1 maps into the pair of error probabili­
ties (q0(η), q1(η)) = (0, 1/2). The error curve contains these points and also contains the 
straight lines joining these points as shown below (see Figure 7.5). The point u(α) is the 
value of q0(η) for which q1(η) = α. Since q1(η) = 0 for η ≥ 1, q0(η) = 1/2 for those values 
of η and thus u(0) = 1/2. Similarly, u(1/2) = 0. 

1 (0, 1)

s



threshold crossing occurs at dαe and a lower threshold crossing at bβc. Thus, in this 
general case Pr{SJ ≥ α} = |bβc|

 . |bβc|+dαe

d) Evaluate your expression when X has an exponential density, f (x) = a e−∏x 
X 1 for x ≥ 0 

and fX (x) = a µx 
2e for x < 0 and where a1 and a2 are chosen so that X = 0. 

Solution: Let us condition on J = n, Sn ≥ α, and Sn 1 = s, for s < α. The overshoot, −
V = SJ −α is then V = Xn +s−α. Because of the memoryless property of the exponential, 
the density of V , conditioned as above, is exponential and fV (v) = ∏e−∏v for v  0. This 
does not depend  

≥
on n or s, and is thus the overshoot density conditioned only on SJ  α. 

Thus E [SJ | J ≥ α] = α + 1/∏. In the same way, E [SJ | SJ ≤ β] =  
≥

β − 1/µ. Thus 

β  + µ−1 

Pr{SJ  
| |≥ α} = 

α + ∏−1 + |β| + µ−1 

Note that it is not necessary to calculate a1 or a2. 

Exercise 7.17 Suppose {Zn; n ≥ 1} is a martingale. Show that 

E 
£  
Zm | Zni , Zni 1 , . . . , Zn1 = Zni for all 0 < n1 < n2 < . . . < n− i < m. 

Solution: First observe from Lemma

§

 7.6.1 that 

E [Zm | Zni , Zni ,−1 Zni−2, Z1] = Zni 

This is valid for every sample value of every conditioning variable. Thus consider Zni−1 

for example. Since this equation has the same value for each sample value of Zni−1, 
we could take the expected value of this conditional expectation over Zni , getting −1

E [Zm | Zni , Zni 2, Z1] = Zni . In the same way, any subset of these conditioning rv’s −
could be removed, leaving us with the desired form. 

Exercise 7.21: a) This exercise shows why the condition E [|ZJ |] < 1 is required in 
Lemma 7.8.1. Let Z1 = −2 and, for n  1, let Zn+1 = Zn[1 + Xn(3n + 1)/(n + 1)] where 
X1, X2, . . . are IID and take on  

≥
the values +1 and −1 with probability 1/2 each. Show 

that {Zn; n ≥ 1} is a martingale. 

Solution: From the definition of Zn above, 

E [Zn | Zn−1, Zn−2, . . . , Z1] = E [Zn 1[1 + Xn 1(3n − 2)/n] | Zn 1, . . . , Z− − − 1] 

Since the Xn are zero mean and IID, this is just E [Zn−1 | Zn−1 . . . , Z1], which is Zn 1. −
Thus {Zn; n ≥ 1} is a martingale. 

b) Consider the stopping trial J such that J is the smallest value of n > 1 for which 
Zn and Zn 1 have the same sign. Show that, conditional on n < J , Z− n = (−2)n/n and, 
conditional on n = J , ZJ = −(−2)n(n − 2)/(n2 − n). 

Solution: It can be seen from the iterative definition of Zn that Zn and Zn−1 have 
different signs if Xn 1 = −1 and have the same sign if X− n−1 = 1. Thus the stopping 
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trial is the smallest trial n ≥ 2 for which Xn 1 = 1. Thus for n < J , we must have −
Xi = −1 for 1 ≤ i < n. For n = 2 < J , X1 must be −1, so from the formula above, 
Z2 = Z1[1 − 4/2] = 2. Thus Zn = (−2)n/n for n = 2 < J . We can use induction now for 
arbtrary n < J . Thus for Xn = −1, 

  
3n + 1 ( 2)n 2n ( 2)n+1 

Zn+1 = Zn 

∑
1 

−
 
− −− = = 

n + 1 

∏

n 
·
n + 1 n + 1 

The remaining task is to compute Zn for n = J . Using the result just derived for n = J −1 
and using XJ−1 = 1, 

∑  
3(J−1) + 1 (−2)J−1 4J  2 ( 2)J (2J  1)

ZJ = ZJ 1 1 + =  
−

= 
− − −

−
J 

∏

J  1 
·− J J(J − 1) 

c) Show that E [|ZJ |] is infinite, so that E [ZJ ] does not exist according to the definition 
of expectation, and show that limn  E [Zn|J > n] Pr{J > n} = 0. →1

Solution: We have seen that J = n if and only if Xi = 1 for 1  i  n  2 and 
Xn 1 = 1. Thus    n+1  

− ≤ ≤ −
Pr− {J = n} = 2− so

X1  n  −  X1   −  X1  1)
E  n

 [ ] = 2n−1 2 (2n 1) 2(2 4|ZJ | · = ≥ =  
n(n 

n=2 

1,− 1) n(n − 1) n 
n=2 n=2 

since the harmonic series diverges. 

Finally, we see that Pr{J > n} = 2n−1 since this event occurs if and only if Xi = 1 for 
1 ≤ i < n.  

−
Thus

2−n+12n 

E [Zn | J > n] Pr{J > n} = = 2/n  
n 

→ 0 

Section 7.8 explains the significance of this exercise. 

Exercise 7.29 Let {Zn; n ≥ 1} be a martingale, and for some integer m, let Yn = 
Zn+m − Zm.


a) Show that E [Yn | Zn+m 1 = zn+m 1, Zn+m 2 = zn+m 2, . . . , Zm = z .− − − m, . . , Z1 = z− 1] =

zn+m−1 − zm.


Solution: This is more straightforward if the desired result is written in the more abbre­
viated form 

E [Yn | Zn+m 1, Zn+m 2, . . . , Zm, . . . , Z1] = Z− − n+m−1 − Zm. 

Since Yn = Zn+m − Zm, the left side above is 

E [Zn+m − Zm|Zn+m 1, . . . , Z1] = Z  − n+m−1 − E [Zm | Zn+m , . . . , Z , . . . , Z ] −1 m 1

Given sample values for each conditioning rv on the right of the above expression, and 
particularly given that Zm = zm, the expected value of Zm is simply the conditioning 
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value zm for Zm. This is one of those strange things that are completely obvious, and yet 
somehow obscure. We then have E [Yn | Zn+m 1, . . . , Z1] = Zn+m 1 − Z− − m. 

b) Show that E [Yn | Yn 1 = yn 1, . . . , Y− − 1 = y1] = yn−1. 

Solution: In abbreviated form, we want to show that E [Yn  Yn ,−1 . . . , Y1] = Yn−1. 
We showed in part a) that E  

|
[Yn | Zn+m 1, . . . , Z1] = Yn 1. For each sample − −

point ω, Yn 1(ω), . . . , Y1(ω) is a function of Z (ω), . . . , Z (ω). Thus, the rv − n+m−1 1

E [Yn | Zn+m 1, . . . , Z1] specifies the rv E [Yn | Yn 1, . . . , Y ], which then must be Y . − − 1 n−1

c) Show that E [|Yn|] < 1. Note that b) and c) show that {Yn; n ≥ 1} is a martingale. 

Solution: Since Yn = Zn+m − Zm, we have |Yn| ≤ |Zn+m| + |Zm|. Since {Zn; n 
         

≥ 1 is a 
martingale, E [|Zn|] < 1 for each n so

E [|Yn|] ≤ E [|Zn+m|] + E [|Zm|] < 1. 
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