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Exercise 1.22: 
For each of the following random variables, find the interval (r , r+) over which the mo­−
ment generating function g(r) exists. Determine in each case whether gX (r) exists at the 
end points r  or r+. For part c), g(r) has no closed form. −

Part a) Let λ, θ, be positive numbers and let X have the density 

1 1 
fX (x) = λ exp(−λx); x ≥ 0; fX (x) = θ exp(θx); x < 0 

2 2

Solution: The MGF is calculated as: 

gX (r) = �E[er x] 
 ∞ 

= fX (x)er x dx 
−∞�  

 
1 0  

θx rx 1 ∞ 

= θe dx + λe−λx erx e dx
2  2 ∞

ex(r+θ)

�
0

x

= 1/2  e (r

θ 0
−λ) 

+ 1/2λ ∞
r +  θ 

|−∞ r  λ 
|0

θ λ 
−

= +
2(θ + r) 2(λ − r) 

As observed, the first integral is infinite if r ≤ −θ and the second integral is infinite if 
r ≥ λ. So gX (r) is defined in the interval (−θ, λ) and boundaries are not included in the 
region of convergence. 

Part b) Let Y be a Gaussian random variable with mean m and variance σ2 . 

Solution: ( ) = 1 exp(− (y−  m)2fY y √
2πσ2 

) for all y
2σ2 .
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gY (r) = E[ery]
∞

 
�  

  1 (y 
= √ exp(

− m)2 

− ) rx e dx
 2  πσ2 2σ2

−∞ �
(y 

 

�  
1 ∞ 

= exp
− (m + rσ2))2 

√ − + r 2σ2/2
2

�
 dx

πσ2  2σ2 
−∞

   ∞ 1 (y  (m +  rσ2))2
= exp(r 2σ2/2) 

�
√ exp 

�
−− dx 

2 2 2σ2 
−∞ πσ

2  

�
= exp(r 2σ /2)

gY (r) exists for all −∞ < r < ∞. But it does not exist for r = −∞ or r = ∞. 

Part c Let Z be a non-negative random variable with density 

fZ (z) =  k(1 + z)−2 exp(−λz); z ≥ 0. 

 
 

−1 
where λ > 0 and k = 

��
(1 + z)2 exp(−az)dz 

�
g≥  . Hint: Do not try to evaluate Z z (r0 ).

Instead, investigate values of r for which the integral is finite and infinite. 

Solution: 

gZ (r) = E� [er z] 
 ∞ 

= er zk(1 + z)−2 exp(−λz) dz 
0�  ∞ 

= k (1 + z)−2 exp ((r − λ)z) dz 
0 

This integral is finite if and only if r is less than λ (r ≤ λ). If r is strictly less than 
λ (r < λ), since exponential function decays much faster than any polynomial, the inte­
gral will be finite. If r = λ, the integration is over a function that decays as z−α where 
α = 2 > 1, and it will be finite. 

Exercise 1.24: 

Part a) Assume that the MGF of the random variable X exists (i.e., is finite) in the 
interval (r , r+), r < r < r throughout. For any finite constant c, express the moment − − + 

generating function of X − c, i.e., g(X c)(r), in terms of gX (r) and show that g− (X−c)(r) 

exists for all r in (r , r+). Explain why g��  − X c(r) ≥ 0.−
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Solution: 

g r) = E[er (X(X
−

−c)(
c)] 

= e−rcE[er X ] 
= e−rc gX (r) 

Since g (r) = e−rc
(X c) gX (r), if gX (r) exists and is finite in the interval (r , r+), g(X c)(r) − − −

also exists in this interval. 
If we define the random variable Y = X − c, then gY (r) = g(X−c)(r) and gX

��
c(r) is −

equal to g 2
Y
�� (r) = E[Y ery] which takes non-negative values. 

  
Part b) Show that gX

��
c(r) = 

�
gX
��

 (r) − 2 (  cg� (r) + c2g r) e−rc.− X X 

Solution: 

�

d2E[er(X−c)]

gX
��
−c(r) =


dr2


d2er(X−c)


= E[ ]
dr2 

= E[( − c)2 X er (X−c)] 

= E[( 2 e−rc X  2cX +  c2 )er X ] 
  

= e−rc � −
E[  X2 er X ] − 2cE[XerX ] + c2 E[� er X ] 
  

= e−rc g 2
X
�� (r) − 2cgX

�
 (r) + c  gX (r) .

��

Part c) Use (a) and (b) to show that gX
�� (  r)gX (r) − [gX

�
 (r)]

2 ≥ 0, Let γX (r) = ln gX (r)
and show that γX

�� (r) ≥ 0. Hint: choose c = gX
�

 (r)/gX (r).

Solution: In part a) it was proved that gX
��

c(r) ≥ 0 and in part b) g�� (r)  X−c) was− (  
calculated. Thus, we know that for any c, gX

�� (r) = e−rc 
−c

Since e−rc ≥ 0, thus, gX
�� (r) − 2cg ( ) + c2

X
� r gX (r) ≥ 0. No

�
g�� r) − 2cg ) + c2
X ( X

� (r gX (r) ≥ 0. 
w choosing c = gX

�
 (r)/gX (r

�
): 

gX
� (r)

� 
 2 g��  r X

� (r)
gX ( ) − 2 g�

( ) X (r) + gX (r)  0
gX r gX (r)


≥

Which gives the desired result immediately.


�
 

Defining γX (r) = ln gX (r), we know  
(r) 

 that γ� (r) = gX
�

 
X γ(r) and g X

� ( ) =
��

 
g (r)gX (r)X −[g (r)]2

r X
�

X g2 (r) 

which is non-negative due to the result above.
X

        

Part d) Assume that X is non-deterministic, i.e., that there is no value of α such that 
Pr{X = α} = 1. Show that the inequality sign ” ≥ ” may be replaced by ” > ” everywhere 
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in (a),(b) and (c). 

Solution: All the inequalities were result of the fact that E[(X − c)2er(X−c)] Th
r

≥ 0. is 
is because e (X−c)  > 0 for all values of X > −∞ and (X − c)2 ≥ 0. Now if there is a 
positive probability that (X − c)2 > 0 or in other terms if X is not a deterministic random 
variable that takes the value of y − c)2 c with probabilit  1, then (X > 0 and g   (

�� >X ) 0.−c (r) 

Exercise 7.1: 

Consider the simple random walk {Sn : n ≥ 1} of section 7.1.1 with Sn = X1 + X2 + 
· · · + Xn and Pr{Xi = 1} = p; Pr{Xi = −1} = 1 − p; assume that p ≤ 1/2,

 
�   k

P
�  

art a) Show that Pr n≥1{Sn ≥ k} 
�

= 
�
Pr 

��
n≥1{Sn ≥ 1} for any positive inte­

ger k. Hint: Given that the random walk ever reaches the value 1,

��
 consider a new random 

walk starting at that time and explore the probability that the new walk ever reaches a 
value 1 greater than its starting point. 

Solution: Since Xi is equal to 1 or −1, Sn increases or decreases by value of one at 
each time. In order for Sn to ever reach the value of k, it should first reach the value of 1. 

 ⎬ ⎨ 

 

 
 

⎧ ⎫ ⎧ ⎫ ⎧ 
⎨ 

 

Pr

⎬ ⎨ 

⎩
1

{S = Pr {Sn  1} Pr
n≥ n

≥  
 n ≥ k}⎭ ⎩ 

≥1
⎭ ⎩⎧ 1

{Sn ≥ k}| Sn  1
  ⎫ ⎧n≥ n≥1

{ ≥ }

⎫
  

⎬
⎨ 

 ⎬ ⎨ 

  

= Pr 

⎭
⎩  ⎭Pr 

1
⎩ 

n

{Sn ≥ 1}
n 1

{Sn ≥ k − 1}

⎫
 

≥ ≥

⎬
   

Doing the same thing iteratively for Pr n k − 1

⎭
��

 ≥1{Sn ≥ }
�
 , we get: Pr 

��� � �� n≥1
 

{Sn ≥ k} = � k 
Pr n 1{S≥ n  

�
≥ 1} . 

  
Part b) Find a quadratic equation for y = Pr n≥1{Sn ≥ 1} . Hint: explore each of 

the two possibilities immediately after the first trial.

��
 

�

Solution: 
  

     
y = Pr 

⎨⎧
Sn ≥

⎫


 1}

⎬⎩ { ⎭ = Pr 

⎧⎨ 

⎩ {Sn ≥ 1}|X1 = 1

⎫⎬
 

⎧⎨ 

⎭ Pr{X1 = 1} + Pr ⎩ {Sn ≥ 1 X
     

}| 1 = −1

⎫
 Pr

 
{X 

n≥1 n≥1 n 1
 

≥

⎬
  

= Pr{X1 = 1} + Pr 

⎧⎨ ⎫


{Sn ≥ 2}

⎬⎩  ⎭ Pr{X1 = 

⎭
−1

 
n

}
≥1
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Where the last equation is because of the fact that the probability that Sn ever reaches 
the value of 1 conditional on the X1 = −1 is the same event that S

 n  should reach 
value of 2 starting from the beginning. Thus, y = Pr n 1{Sn ≥ 1} = p + (1 �� ≥ −

 2
p)Pr n  

�
} = p + (1

�
≥1{Sn ≥ 1

�
 − p)y2 . 

�

Part c) For p < 1/�2, show that the� two roots of this quadratic equation are (1�    )  p/ − p
 

and 1. Argue that Pr n 1{Sn ≥ 1} cannot be 1 and thus must be p/(1  p). ≥ −

Solution: We see that both the values of p/(1 
2 

− p) and 1 satisfy the equation y = 
p + (1 − p)y . Since p < 1/2, there is a drift to the left in the Markov chain corresponding 
to this random walk. Thus, there is a positive probability that Sn gets negative values 
and
{
�  wanders off to −∞ without ever reaching the value of 1. Hence the probability of  
 n 1{Sn ≥ 1}} should be less than 1 and it is p/(1 ≥ − p). 

Part d) For� p = 1/2, show that the quadratic equation in part (c) has a
1,

�  double root at   
 and thus Pr n {S≥1 n ≥ 1} 

�
= 1. Note: this is the very peculiar case explained in the 

section on Wald’s equality. 

Solution: When p� = 1/2, b�  p/(1 − p�) = 1 and so oth the roots of the quadratic function   
are 1. Although Pr n 1{Sn ≥ 1} = 1 in this case, the expected time to reach the ≥
value of 1 for this Random walk is infinite, the corresponding birth-death Markov chain is 
null-recurrent and that is the reason for the peculiar behavior of that. 

Part e) For p < 1/2, show that p/(1 − p) = exp(−r∗) where r∗ is the unique positive 
root of gX (r) = 1 where g(r) = E[erx]. 

Solution: The moment generating function is  gX (r) = per + (1 −  p)e−r. The solution 
to the equation gX (r) = 1 satisfies p + (1 − p)e−2r∗ = e−r∗. Setting z = exp(−r∗), we have 

 p +(1 − p)z2 = z.This equation has two solutions z = 1 or z = p/(1 − p). z = 1 corresponds 
to r∗ = 0 and z = p/(1 − p) corresponds to the unique positive solution of the equation 
where exp(−r∗) = p/(1 − p). (Since p < 1/2, p/(1 − p) < 1 and r∗ > 0). 

Exercise 7.3: 
A G/G/1 queue has a deterministic service time of 2 and interarrival times that are 3 with 
probability p and 1 with probability 1 − p. 

Part a) Find the distribution of W1, the wait in queue of the first arrival after the 
beginning of a busy period. 
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Solution: We know that W1 = max(Y0 − X1, 0). Y0 = 2 with probability 1, X1 = 3 
with probability p and X1 = 1 with probability 1 − p. So Y0 − X1 = −1 with probability 
p and is equal to 1 with probability 1 − p. Thus, W1 = 0 with probability p and is equal 
to 1 with probability 1 − p. 

Part b) Find the distribution of W , the steady state wait in queue. ∞

Solution: We define Un = Yn  X and similarly to part (a), it can be proved that −1 − n 

Un’s are IID random variable that are equal to 1 with probability 1 − p and are equal to 
−1 with probability p. Similar to the analysis done in section 7.2 of the notes, we know 
that: 

 W  n
n = max(0, Z1 , Z

n
2 , 

n 

· · · , Zn
n )

Where Z = U + U + · · · + U for 1 ≤ i ≤ n. Thus, Zn 
i n n 1 n i+1 i is a random walk of − −

Un, Un ,−1  · · · , Un i h− +1 whic  are IID random variables. Hence, 

Pr{W
  ≥ k} = lim Pr max(0, Zn
∞ 1 , Z

n  , Zn
2 , n )  k

n→∞
{ · ≥ }

 
= Pr 

⎨⎧ 
· ·



n

⎫

 ⎬ 
Zn ≥ k




≥1 



k 

 

= Pr 

⎩ ⎭⎧
≥




⎨
n

⎫


n Z  1 



≥1 

⎬



k
Thus, Pr{ 
 ≥ } = 

�
1−p W  k  

⎩ ⎭�
if p > 1/2 and Pr{W  p ≥ k} = 1 if p < 1/2. ∞ ∞

Exercise 7.4: 

A sales executive hears that one of his sales people is routing half of his incoming sales 
to a competitor. In particular, arriving sales are known to be Poisson at rate one per hour. 
According to the report (which we view as hypothesis 1), each second arrival is routed 
to the competition; thus under hypothesis 1 the interarrival density for successful sales is 
f(y|H1) = ye−y; y ≥ 0. The alternative hypothesis (H0) is the rumor is false and the 
interarrival density for successful sales is f(y|H y

0) = e− ; y ≥ 0. Assume that, a priori, 
the hypotheses are equally likely. The executive, a recent student of stochastic processes, 
explores various alternatives for choosing between the hypotheses; he can only observe the 
times of successful sales however. 

Part a) Starting with a successful sale at time 0, let Si be the arrival time of the i-th 
subsequent successful sale. The executive observes S1, S2, · · · , Sn (n ≥ 1) and chooses 
the maximum aposteriori probability hypothesis given this data. Find the joint density 
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f(S1, S2, · · · , Sn|H1) and f(S1, S2, · · · , Sn|H0) and give the decision rule. 

Solution: Let’s define Yi to be the interarrival time of the ith successful sale (i.e., 
Yi = Si − Si 1) and Y1 = S1. We know that Y− i’s are IID and their distribution conditional 
on each hypothesis is given. 

Thus, 

f(Y1, Y2, · · · , Yn|H1) = f(Y1|H1)f(Y2|H1) f(Yn|H1) �n

· · · 
 

= f(Yi H  
i=1 

| 1)

n  
= 

�
Y e−Yi 

i

i=1 

Y ) 
�n  

= e−( 1+···+Yn Yi 

i=1 
n  

= e−Sn 
�

Yi 

i=1 
 

Based on the definition of Yi, f(S1, S2, · · · −Sn n, Sn|H1) = e
�  

i=1 (Si − Si ) where S is−1 0 

defined to be 0. 

Similarly, 
f(Y1, Y

S
2, · · · , Yn|H0) = e− n 

Thus, f(S1, S2, · · · , S Sn 
n|H0) = e− . The optimal decision making rule, assuming the 

equiprobable priors for the hypotheses is a thresholding on likelihood ratio function. If 
Λ(S1, · · ·
 , Sn) > 1 then the hypothesis H1 is chosen, otherwise hypothesis H0 is chosen. 

f(S , S ,  , S H )

Λ(S1, · · · 1 2 n 1

, Sn) = 
· · · |

f(S1,
Sn 

�S2, 
 n
· · · , Sn|H0)


e− i=1 (Si  Si−1)= 
e−Sn 

−

n  
=

�
(Si − Si−1) 

i=1 � n  
So if i=1 (Si − Si 1) ≥ 1, hypothesis H1 is chosen and if −

�n
i=1 (Si − Si ) < 1, hypoth­−1

esis H0 is chosen. 

Part b) This is the same as part (a) except that the system is in steady state at time 
0 (rather than starting with a successful sale). Find the density of S1 (the time of the 
first arrival after time 0) conditional on H0 and H1. What is the decision rule now after 
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observing S1, S2, · · · , Sn.

Solution: The only difference with part (a) is the distribution of the first arrival. The 
consecutive arrivals are going to have the same distribution as they had in part (a). 

Under hypothesis H0, due to the memoryless property of the exponential distribution, 
the remaining time to the next arrival is also going to be exponentially distributed. So 
f(Y = e−Y1 

1|H0) ; Y1 ≥ 0, and f(S1, S2, · · · , Sn|H0) = e−Sn . 
Under the hypothesis H1, since the system is in steady state, two cases are possible at 

time 0. Either the first arrival will be routed to the competition or it will be a successful 
sale.These two events are equiprobable. If the first sale is supposed to be successful sale, 
its arrival time should be distributed exponentially (as under hypothesis H1). If it is going 
to be routed, the arrival time of the first successful job is the sum of two arrival times, 
each distributed exponentially (the first one will be routed and the second one will be 
successful). This will be the same distribution that the later arrival times have under 
hypothesis H1. Thus, f(Y1 = y|H1) = 1/2e−y + 1/2ye−y.  

Based on similar analysis to part (a), f(S1, S2, · · · , Sn|H  −Sn 
�n

1) = e i=1 (Si − Si ) and −1

f(S1, S2, · · · , Sn|H1) = f(Y1 = S1|H1)f(S2, · · · , Sn|H1, S1) 
= f(Y1 = S1|H1)f(Y2 = S2 − S1, · · · , Yn = Sn − Sn H−1�  n

| 1) 
 

= 1/2e−S1 + 1/2S e−S1 
��

(S − S )e−(S
− i S

1 i i 1
− i−1) 

i=2 

1 
n  

= e−Sn [1 + S1]
�

(S S
2 i − i 1)−

i=2 

So the likelihood ration function will be: 

f(S , S ,  ,
Λ(S1, 

· · · S |H ) · · · 1 2 n
, ) = 1
Sn

f(S1, S2, · · · , Sn|H0)
 

1  + n/2e−Sn (1 S
= 1) 

 

�
i=2 (Si − Si−1) 

e−Sn 

n

= 1/2(1 + S1)
�

(Si  Si  −1)
i=2 

−

Again, if Λ(S1, · · · , Sn) ≥ 1, hypothesis H1 is chosen, and if Λ(S1, · · · , Sn) < 1, hypoth­
esis H0 is chosen. 

Part c) 
This is the same as part (b) except rather than observing n successful sales, the success­

ful sales up to some given time t are observed. Find the probability, under each hypothesis, 
that the first successful sale occurs in (s1, s1 + Δ], the second in (s2, s2 + Δ], · · · , and the 
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last in (sN(t), sN(t) + Δ] (assume Δ very small). What is the decision rule now? 

Solution: 
Suppose the observed data is s1, s2, · · · , sn where n is the observed value of N(t). Under 

H0, the probability of arrivals in (s1, s1 +Δ),· · · , (sn, sn +Δ) (Δ very small) is the probabil­
ity that the first n arrivals are in these intervals times the probability of no arrival from sn+Δ 

to s2 +  t. This is Δ exp(−s1)Δ exp(− s + n
1) · · · Δ exp(−sn  sn−1) exp(−t + sn) = Δ exp(−t).

Similarly, for H1, the probability of an arrival in (s1, s1 + Δ) is Δ(1 + s1) exp(−s1)/2. The 
probability of each subsequent arrival i is Δ(si − si 1) exp( −si + si ). , the − −1  Finally prob­
ability of no arrival in (sn, t) is x exp( (t =  − sn + − −x) dx 1) exp(−t + sn  us x>(t s ) ). Th

n

the probability of arrivals in (s ,

�
s +Δ), · · · , (s , s +Δ) is Δn

1 1 n n (1+ s1)/2(s2 − s1) · · · (sn −
sn−1)(t − sn + 1) exp(−t). Taking the ratio of these probabilities, we choose H1 if �  

n  s1 + 1 �
(s )

2 i − si (t  s + 1) > 1 −1

�
− n 

i=1 
. 

We choose H0 if this is strictly less than 1, and we don’t care if it is equal to 1. 

Exercise 7.5: 

For the hypothesis testing problem of Section 7.3., assume that there is a cost C0 of 
choosing H1 when H0 is correct, and a cost C1 of choosing H0 when H1 is correct. Show 
that a threshold test minimizes the expected cost using the threshold η = (C1p1)/(C0p0). 

Solution: For a given sequence of observations y, if we select ĥ = 0, an error is made 
if h = 1. The probability of this even is Pr{H = 1|y} and the expected cost will be 
c1Pr{H = 1|y}. 

If we select ĥ = 1, an error is made if h = 0. The probability of this even is Pr{H = 0|y}
and the expected cost will be c0Pr{H = 0|y}. 

In order to minimize the expected loss, the decision rule should choose ĥ = 1 if c0Pr{H = 0|y} < 
c1Pr{H = 1|y . ˆ}  Thus, h = 1 if: 

c0Pr{H = 0|y} < c1Pr{H = 1|y}
Pr{H = 0|y} c1 

<
Pr{H = 1|y} c0 

p0Pr{y|H = 0} c1 
<

p1Pr{y|H = 1} c0 

Pr{y|H = 0} p1c1 
<

Pr{y|H = 1} p0c0 
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Exercise 7.10: Consider a random walk with thresholds α > 0, β < 0. We wish to find 
Pr{SJ ≥ α} in the absence of a lower threshold. Use the upper bound in (7.42) for the 
probability that the random walk crosses α before β. 

Part a) Given that the random walk crosses β first, find an upper bound to the proba­
bility that α is now crossed before a yet lower threshold at 2β is crossed. 

Solution: Let J1 be the stopping trial at which the walk first crosses either α or β. Let 
J2 be the stopping trial at which the random walk first crosses either α or 2β (assuming the 
random walk continues forever rather than actually stopping at any stopping trial. Note 
that if SJ1 ≥ α, then SJ2 = SJ1 , but if SJ1 ≤ β, then it is still possible to have SJ2 ≥ α. 
In order for this to happen, a random walk starting at trial J1 must reach a threshold of 
α − SJ1 before reaching 2β − SJ1 . Putting this into equations, 

Pr{SJ2 ≥ α} = Pr{SJ1 ≥ α} + Pr{SJ2 ≥ α | SJ1 ≤ β} Pr{SJ1 ≤ β}
Pr{SJ2 ≥ α | SJ1 ≤ β} ≤ exp[r∗(α − β)], 

where the latter equation upper bounds the probability that the RW starting at trial J1 

reaches α − SJ1 before 2β − SJ1 , given that SJ1 ≤ β. 

Part b) Given that 2β is crossed before α, upperbound the probability that α is crossed 
before a threshold at 3β. Extending this argument to successively lower thresholds, find an 
upper bound to each successive term, and find an upper bound on the overall probability 
that α is crossed. By observing that β is arbitrary, show that (7.42) is valid with no lower 
threshold. 

Solution: Let Jk for each k ≥ 1 be the stopping trial for crossing α before kβ. By the 
same argument

  
 
�  as above, 

  
Pr SJk+1 ≥ α 

�
= Pr{SJk ≥ α} + Pr 

�
SJk+1 ≥ α | SJk ≤ kβ 

≤ Pr{SJk ≥ α} + exp[r∗(α − kβ)], 

�
Pr{SJk ≤ kβ} 

Finally, let J be the defective stopping time at which α is first crossed. We see from ∞
above that the event SJ  > α is the union of the the events S∞ Jk ≥ α over all k ≥ 1. We 
can upperbound this by 

∞   
Pr{SJ  ≥ α} ≤ Pr{SJ1 ≥ α} + 

�
Pr 

�
SJk+1 ≥ α | SJk ≤ kβ ∞

k=1 

1 

�
≤ exp[r∗α]

1 − exp[r∗β] 

Since this is true for all β < 0, it is valid in the limit β → −∞, yielding e−r∗α . 
The reason why we did not simply take the limit β → −∞ in the first place is that 

such a limit would not define a defective stopping rule as any specific type of limit. The 
approach here was to define it as a union of non-defective stopping rules. 
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