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Solutions to Homework 10 
6.262 Discrete Stochastic Processes 

MIT, Spring 2011 
Exercise 6.5: 

Consider the Markov process illustrated below. The transitions are labelled by the rate 
qij at which those transitions occur. The process can be viewed as a single server queue 
where arrivals become increasingly discouraged as the queue lengthens. The word time-
average below refers to the limiting time-average over each sample-path of the process, 
except for a set of sample paths of probability 0. 

Part a) Find the time-average fraction of time pi spent in each state i > 0 in terms of 
p0 and then solve for p0. Hint: First find an equation relating pi to pi+1 for each i. It also 
may help to recall the power series expansion of ex. 

Solution: From equation (6.36) we know: 

λ 
pi = pi+1µ, for i  0 

i + 1 
≥

By iterating over i we get: 

λ λ i+1 1 
pi+1 = pi = p , for i  0 

µ(i + 1)

�
µ 

�
(i + 1)! 0 ≥

1
�∞  

= pi 

i=0�    ∞
 i λ 1

= p0	 1 + 

�
µ

�
i! 

i=1 

�
= p0e

λ/µ

�

Where the last derivation is in fact the Taylor expansion of the function ex. Thus, 

=	 −λ/µ p0 �e �i λ 1
pi = e−λ/µ, for i ≥ 1 

µ i!

Part b) Find a closed form solution to 
i. Show that the process is positive recurren

� 
i pivi where vi is the departure rate from state 
t for all choices of λ > 0 and µ > 0 and explain 
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intuitively why this must be so. 

Solution: We observe that v0 = λ and vi = µ + λ/(i + 1) for i ≥ 1. 

�   i 1
p λ/µ λ 
 λ/µ

ivi = λe− + 
�

{[µ + λ/(i + 1)] 
�

e− 

µ

≥

�
i!

i≥0 i 1 

}
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�
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µ i! µ (i + 1)! 
i≥1 

� � �
i≥1 
 

�
  

�
  

= λe−λ/µ λ
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The value of i pivi is finite for all

�
 values of λ > 0 and µ > 0. So this process is positive 

recurrent for for

�
 all choices of transition rates λ and µ. 

We saw that P = λPi 
i+1 , so pi must decrease rapidly in i  µ(i+1) for sufficiently large i. Thus 

the fraction of time spent in very high numbered states must be negligible. This suggests 
that the steady-state equations for the pi must have a solution. Since νi is   bounded be­
tween µ and µ + λ for all i, it is intuitively clear that i νipi is finite, so the embedded 
chain must be positive recurrent. 

�
Part c) For the embedded Markov chain corresponding to this process, find the steady 

state probabilities πi for each i ≥ 0 and the transition probabilities Pij for each i, j. 
   

Solution: Since as shown in part (b), 
�

i 0 pivi = 1/ 
��

i 0 πi/vi 

�
< ∞, we know that ≥ ≥

for all j ≥ 0, πj is proportional to pj vj : 

� p v
  

πj = j j
, forj  0 

k≥0 pkvk 
≥

So 1
 = λe−λ/µ


π0  = ρ  and for j  1:

2µ(1−e−λ/µ) 2 eρ−1 ≥

[  1)]  µ + λ/(j + ρj 1 e! 
−ρ

j
πj =

2µ (1 − e−ρ) 
µ [1 + ρ/(j + 1)] ρj e−ρ 

= 
2µ (1  e−ρ) j! 
  

i ρ
� −

ρ 1 
= 1 + , for j  1

j! j + 1 

�
2 (eρ ≥

− 1)
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The embedded Markov chain will look like: 

The transition probabilities are: 

P01 = 1 
(i + 1)µ

Pi,i = , for i  1−1 
λ + (i + 1)µ 

≥

λ 
Pi,i+1 = , for i 

λ + (i + 1)µ
≥ 1 

Finding the steady state distribution of this Markov chain gives the same result as found 
above. 

Part d) For each i, find both the time-average interval and the time-average number of 
overall state transitions between successive visits to i. 

Solution: Looking at this process as a delayed renewal reward process where each entry 
to state i is a renewal and the inter-renewal intervals are independent. The reward is equal 
to 1 whenever the process is in state i. 

Given that transition n − 1 of the embedded chain enters state i, the interval Un is 
exponential with rate vi, so E[Un|Xn 1 = i] = 1/vi. During this Un time, reward is 1 and −
then it is zero until the next renewal of the process. 

The total average fraction of time spent in state i is pi with high probability. 
So in the steady state, the total fraction of time spent in state i (pi) should be equal to 

the fraction of time spent in state i in one inter-renewal interval. The expected length of 
time spent in state i in one inter-renewal interval is 1/vi and the expected inter renewal 
interval (Wi) is what we want to know: 

U 1 
pi = = 

Wi viWi 

Thus Wi = 1  p v .
i i 

eρ

W0 = 
λ 

(i + 1)!
Wi = eρ  , for i  

i(i + 1 + ρ)
≥ 1

µρ
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Applying Theorem 5.1.4 to the embedded chain, the expected number of transitions, 
E [Tii] from one visit to state i to the next, is T ii = 1/πi. 

Exercise 6.9: 
Let qi,i+1 = 2i−1 for all i ≥ 0 and let qi,i 1 = 2i−1 for all i ≥ 1. All other transition rates −
are 0. 

Part a) Solve the steady-state equations and show that pi = 2−i−1 for all i ≥ 0. 

Solution: The defined Markov process can be shown as: 

�� �� �� �� �� �� �� �� �� ��

For each i ≥ 0, piqi,i+1 = pi+1qi+1,i. 

1 
pi = p

2 i−1, fori ≥ 1 

1 = 
�   

pj = p0 

�  
1 1 

1 + + + 
2 4

·  
j

· 
 

·
≥0 

�
So p0 = 1  2 and

1 
pi = , i 

2i+1 ≥ 0 
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Part b) Find the transition probabilities for the embedded Markov chain and show that 
the chain is null-recurrent. 

Solution: 
The embedded Markov chain is: 

�� �� �� �� �� �� �� �� �� ��

The steady state probabilities satisfy π0 = 1/2π1 and 1/2πi = 1/2πi+1 for i ≥ 1. So 
2π0 = π1 = π2 = π3 = · · · . This is a null-recurrent chain, as essentially shown in Exercise
5.2. 

Part c) For any state i, consider the renewal process for which the Markov process 
starts in state i and renewals occur on each transition to state i. Show that, for each i ≥ 1, 
the expected inter-renewal interval is equal to 2. Hint: Use renewal reward theory. 
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Solution: 

As explained in Exercise 6.5 part (d), the expected inter-renewal intervals of recurrence 
of state i (Wi) satisfies the equation pi = 1 . Hence, 

viWi 

1 1 
Wi = = = 2 

v  
ip i

i 2−(i+1)2
. 

Where vi =  qi,i+1 + qi,i−1 = 2i

Part d) Show that the expected number of transitions between each entry into state 
i is infinite. Explain why this does not mean that an infinite number of transitions can 
occur in a finite time. 

Solution: We have seen in part b) that the embedded chain is null-recurrent. This 
means that, given X0 = i, for any given i, that a return to i must happen in a finite num­
ber of transitions (i.e., limn  Fii(n) = 1). We have seen many rv’s that have an infinite →∞
expectation, but, being rv’s, have a finite sample value WP1. 

Exercise 6.14: 

A small bookie shop has room for at most two customers. Potential customers arrive at 
a Poisson rate of 10 customers per hour; They enter if there is room and are turned away, 
never to return, otherwise. The bookie serves the admitted customers in order, requiring 
an exponentially distributed time of mean 4 minutes per customer. 

Part a) Find the steady state distribution of the number of customers in the shop. 

Solution: The arrival rate of the customers is 10 customers per hour and the service 
time is exponentially distributed with rate 15 customers per hour (or equivalently with 
mean 4 minutes per customer). The Markov process corresponding to this bookie store is: 

�� ���� ��0 
10 �� ���� ��1 

10 �� ���� ��2 
15 15 

To find the steady state distribution of this process we use the fact that p0q0,1 = p1q1,0 

and p1q1,2 = p2q2,1. So: 

10p0 = 15p1 

10p1 = 15p2 

1 = p0 + p1 + p2 

Thus, p 6 9 4
1 = p , 0 19 = 19 , p2 = 19 . 
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Part b) Find the rate at which potential customers are turned away. 

Solution: 
The customers are turned away when the process is in state 2 and when the process is 

in state 2, at rate λ = 10 the customers are turned away. So the overall rate at which the 
customers are turned away is = 40 λp2 19 .

Part c) Suppose the bookie hires an assistant; the bookie and assistant, working to­
gether, now serve each customer in an exponentially distributed time of mean 2 minutes, 
but there is only room for one customer (i.e., the customer being served) in the shop. Find 
the new rate at which customers are turned away. 

Solution: 
The new Markov process will look like: 

�� �� 10 �� �� ��0��
30

��1
 

��
The new steady state probabilities satisfy 10 = 30 and + = 1. Thus, = 1 p0 p1 p0 p1 p1 and 4

p0 = 3 . The customers are turned away if the  4 process is in state 1 and then this happens 
with rate λ = 10. Thus, the overall rate at which the customers are turned away is λp1 = 5 

2 . 

Exercise 6.16: 

Consider the job sharing computer system illustrated below. Incoming jobs arrive from 
the left in a Poisson stream. Each job, independently of other jobs, requires pre-processing 
in system 1 with probability Q. Jobs in system 1 are served FCFS and the service times 
for successive jobs entering system 1 are IID with an exponential distribution of mean 
1/µ1. The jobs entering system 2 are also served FCFS and successive service times are 
IID with an exponential distribution of mean 1/µ2. The service times in the two systems 
are independent of each other and of the arrival times. Assume that µ1 > λQ and that 
µ2 > λ. Assume that the combined system is in steady state. 

����

Part a) Is the input to system 1 Poisson? Explain. 

Solution: Yes. The incoming jobs from the left are Poisson process. This process is 
split in two processes independently where each job needs a preprocessing in system 1 
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with probability Q. We know that if a Poisson process is split into two processes, each 
of the processes are also Poisson. So the jobs entering the system 1 is Poisson with rate λQ. 

Part b) Are each of the two input processes coming into system 2 Poisson? 

Solution: By Burke’s theorem, the output process of a M/M/1 queue is a Poisson 
process that has the same rate as the input process. So both sequences entering system 2 
are Poisson, the first one has rate Qλ and the second one has rate (1 − Q)λ. The overall 
input is merged process of these two that is going to be a Poisson with rate λ (Since these 
processes are independent of each other.) 

Part d) Give the joint steady-state PMF of the number of jobs in the two systems. 
Explain briefly. 

Solution: We call the number of customers being served in system 1 at time t as X1(t) 
and number of customers being served in system 2 at time t, as X2(t). 

The splitting of the input arrivals from the left is going to make two independent pro­
cesses with rates Qλ and (1 − Q)λ. The first process goes into system 1 and defines X1(t). 
The output jobs of system 1 at time t is independent of its previous arrivals. Thus the 
input sequence of system 2 is independent of system 1. The two input processes of system 
2 are also independent. 

Thus, X1(t) is the number of customers in an M/M/1 queue with input rate Qλ and 
service rate µ1 and X2(t) is the number of customers in an M/M/1 queue with input 
rate λ and service rate µ2. The total number of the customers in the system is X(t) = 
X1(t) + X2(t) where X1(t) is independent of X2(t). 

System one can be modeled as a birth death process where qi,i+1 = Qλ and qi,i = µ . 
i 

−1 1

Thus, Pr{X1 = i} = (1 − ρ1)ρ1 in the steady state where ρ1 = Qλ/µ1. The same is true 
for system 2, thus, Pr{X2 = j} = (1 − j ρ2)ρ2 in the steady state where ρ2 = λ/µ2.

7



 

Due to the independency of X1 and X2, 

Pr{X = k} = Pr{X1 + X2 = k}�k  
= Pr{X1 = i, X2 = k − i

i=0 

}

�k  
= Pr{X1 = i} Pr i

i=0

{X2 = k − 
 

}

= 
�k  

(1 − ρ1)ρi 
1(1  

=0

− ρ i
2)ρk

2 
−

i  

k  
= (1 − ρ1)(1 − ρ i

2)ρk  
2 

 ρ

�
(ρ1/ρ2)

i=0 
k

= (1 − )(1 − 2  ρk 
1 ρ1 ρ2)

−
ρ2 − ρ1 

Part e) What is the probability that the first job to leave system 1 after time t is the 
same as the first job that entered the entire system after time t? 

Solution: 
The first job that enters the system after time t is the same as the first job to leave 

system 1 after time t if and only if X1(t) = 0 (system 1 should be empty at time t, unless 
other jobs will leave system 1 before the specified job) and the first entering job to the 
whole system needs preprocessing and is routed to system 1 (and should need) which hap­
pens with probability Q. Since these two events are independent, the probability of the 
desired event will be (1 − ρ1)Q = (1 − Qλ )Q. µ1 

Part f) What is the probability that the first job to leave system 2 after time t both 
passed through system 1 and arrived at system 1 after time t? 

Solution: This is the event that both systems are empty at time t and the first arriving 
job is routed to system 1 and is finished serving in system 1 before the first job without 
preprocesing enters system 2. These three events are independent of each other. 

The probability that both systems are empty at time t in steady state is Pr{X1(t) = 0, X2(t) = 0} = 
(1 − ρ1)(1 − ρ2). 

The probability that the first job is routed to system 1 is Q. 
The service time of the first job in system 1 is called Y1 which is exponentially distributed 

with rate µ1 and the probability that the first job is finished before the first job without 
preprocessing enters system 2 is Pr{Y1 < Z} where Z is the r.v. which is the arrival time 
of the first job that does not need preprocessing. it is also exponentially distributed with 
rate (1 − Q)λ. Thus, Pr{Y1 < Z} = µ1 

µ1+(1−Q)λ . 
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Hence, the total probability of the described event is (1 − Qλ λ µ1

µ )(1 
1 

−  µ )Q
2 µ1+(1 Q)λ .−
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