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Exercise 6.5:

Consider the Markov process illustrated below. The transitions are labelled by the rate
¢i; at which those transitions occur. The process can be viewed as a single server queue
where arrivals become increasingly discouraged as the queue lengthens. The word time-
average below refers to the limiting time-average over each sample-path of the process,
except for a set of sample paths of probability O.
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Part a) Find the time-average fraction of time p; spent in each state ¢ > 0 in terms of
po and then solve for pg. Hint: First find an equation relating p; to p;+1 for each 4. It also

may help to recall the power series expansion of e®.

Solution: From equation (6.36) we know:
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Where the last derivation is in fact the Taylor expansion of the function e®. Thus,
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Part b) Find a closed form solution to ) . p;uv; where v; is the departure rate from state
1. Show that the process is positive recurrent for all choices of A > 0 and p > 0 and explain



intuitively why this must be so.

Solution: We observe that vo = A and v; = u+ A/(i + 1) for i > 1.
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The value of ), p;v; is finite for all values of A > 0 and p > 0. So this process is positive
recurrent for for all choices of transition rates A and p.

We saw that P, = %, so p; must decrease rapidly in ¢ for sufficiently large i. Thus
the fraction of time spent in very high numbered states must be negligible. This suggests
that the steady-state equations for the p; must have a solution. Since v; is bounded be-
tween p and g+ A for all i, it is intuitively clear that ), v;p; is finite, so the embedded

chain must be positive recurrent.

Part c) For the embedded Markov chain corresponding to this process, find the steady
state probabilities m; for each ¢ > 0 and the transition probabilities F;; for each i, j.

Solution: Since as shown in part (b), Y.<, pivi =1/ (ZDO m/vi> < 00, we know that
for all j > 0, m; is proportional to p;v;:
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The embedded Markov chain will look like:
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The transition probabilities are:
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Finding the steady state distribution of this Markov chain gives the same result as found
above.

Part d) For each 4, find both the time-average interval and the time-average number of
overall state transitions between successive visits to i.

Solution: Looking at this process as a delayed renewal reward process where each entry
to state ¢ is a renewal and the inter-renewal intervals are independent. The reward is equal
to 1 whenever the process is in state .

Given that transition n — 1 of the embedded chain enters state i, the interval U, is
exponential with rate v;, so E[U,|X,,—1 = i| = 1/v;. During this U,, time, reward is 1 and
then it is zero until the next renewal of the process.

The total average fraction of time spent in state ¢ is p; with high probability.

So in the steady state, the total fraction of time spent in state i (p;) should be equal to
the fraction of time spent in state ¢ in one inter-renewal interval. The expected length of
time spent in state ¢ in one inter-renewal interval is 1/v; and the expected inter renewal
interval (W;) is what we want to know:
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Applying Theorem 5.1.4 to the embedded chain, the expected number of transitions,
E [T};] from one visit to state i to the next, is Ty = 1/m;.

Exercise 6.9: ‘
Let ¢i 11 = 2= for all 4 > 0 and let Giji—1 = 2=1 for all ¢ > 1. All other transition rates
are 0.
Part a) Solve the steady-state equations and show that p; = 27*~1 for all i > 0.
Solution: The defined Markov process can be shown as:
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Part b) Find the transition probabilities for the embedded Markov chain and show that
the chain is null-recurrent.

Solution:
The embedded Markov chain is:
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The steady state probabilities satisfy mo = 1/2m; and 1/2m; = 1/2m;44 for ¢ > 1. So

2mg = m = w9 = w3 = ---. This is a null-recurrent chain, as essentially shown in Exercise
5.2.

Part c¢) For any state i, consider the renewal process for which the Markov process
starts in state ¢ and renewals occur on each transition to state . Show that, for each ¢ > 1,
the expected inter-renewal interval is equal to 2. Hint: Use renewal reward theory.



Solution:

As explained in Exercise 6.5 part (d), the expected inter-renewal intervals of recurrence

of state i (WW;) satisfies the equation p; = Utv Hence,
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Where v; = gi i1 + Gii1 = 2

Part d) Show that the expected number of transitions between each entry into state
1 is infinite. Explain why this does not mean that an infinite number of transitions can
occur in a finite time.

Solution: We have seen in part b) that the embedded chain is null-recurrent. This
means that, given Xy = ¢, for any given 7, that a return to ¢ must happen in a finite num-
ber of transitions (i.e., lim, .o Fji(n) = 1). We have seen many rv’s that have an infinite
expectation, but, being rv’s, have a finite sample value WP1.

Exercise 6.14:

A small bookie shop has room for at most two customers. Potential customers arrive at
a Poisson rate of 10 customers per hour; They enter if there is room and are turned away,
never to return, otherwise. The bookie serves the admitted customers in order, requiring
an exponentially distributed time of mean 4 minutes per customer.

Part a) Find the steady state distribution of the number of customers in the shop.
Solution: The arrival rate of the customers is 10 customers per hour and the service

time is exponentially distributed with rate 15 customers per hour (or equivalently with
mean 4 minutes per customer). The Markov process corresponding to this bookie store is:
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To find the steady state distribution of this process we use the fact that pogo1 = p1¢i,0
and p1q1 2 = p2g2,1. So:

10pp = 15p;
10p1 = 15po
1 = po+p1+p2
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Part b) Find the rate at which potential customers are turned away.

Solution:
The customers are turned away when the process is in state 2 and when the process is
in state 2, at rate A = 10 the customers are turned away. So the overall rate at which the
. _ 40
customers are turned away is Aps = {g-
Part c) Suppose the bookie hires an assistant; the bookie and assistant, working to-
gether, now serve each customer in an exponentially distributed time of mean 2 minutes,
but there is only room for one customer (i.e., the customer being served) in the shop. Find

the new rate at which customers are turned away.

Solution:
The new Markov process will look like:
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The new steady state probabilities satisfy 10pg = 30p; and pg+p1 = 1. Thus, p; = i and
Py = %. The customers are turned away if the process is in state 1 and then this happens
with rate A = 10. Thus, the overall rate at which the customers are turned away is Ap; = g

Exercise 6.16:

Consider the job sharing computer system illustrated below. Incoming jobs arrive from
the left in a Poisson stream. Each job, independently of other jobs, requires pre-processing
in system 1 with probability Q. Jobs in system 1 are served FCFS and the service times
for successive jobs entering system 1 are IID with an exponential distribution of mean
1/p1. The jobs entering system 2 are also served FCFS and successive service times are
IID with an exponential distribution of mean 1/us. The service times in the two systems
are independent of each other and of the arrival times. Assume that p; > AQ and that
o > A. Assume that the combined system is in steady state.

A Q System 1 System 2
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Part a) Is the input to system 1 Poisson? Explain.

Solution: Yes. The incoming jobs from the left are Poisson process. This process is
split in two processes independently where each job needs a preprocessing in system 1



with probability (). We know that if a Poisson process is split into two processes, each
of the processes are also Poisson. So the jobs entering the system 1 is Poisson with rate AQ.

Part b) Are each of the two input processes coming into system 2 Poisson?

Solution: By Burke’s theorem, the output process of a M/M/1 queue is a Poisson
process that has the same rate as the input process. So both sequences entering system 2
are Poisson, the first one has rate QA and the second one has rate (1 — Q)A. The overall
input is merged process of these two that is going to be a Poisson with rate A (Since these
processes are independent of each other.)

Part d) Give the joint steady-state PMF of the number of jobs in the two systems.
Explain briefly.

Solution: We call the number of customers being served in system 1 at time ¢t as X (¢)
and number of customers being served in system 2 at time ¢, as X(¢).

The splitting of the input arrivals from the left is going to make two independent pro-
cesses with rates QX and (1 — Q). The first process goes into system 1 and defines X ().
The output jobs of system 1 at time ¢ is independent of its previous arrivals. Thus the
input sequence of system 2 is independent of system 1. The two input processes of system
2 are also independent.

Thus, X;(t) is the number of customers in an M/M/1 queue with input rate QX and
service rate p; and Xs(t) is the number of customers in an M/M/1 queue with input
rate A and service rate pg. The total number of the customers in the system is X (t) =
X1 (t) + X2(t) where X;(t) is independent of Xs(t).

System one can be modeled as a birth death process where ¢; ;41 = QX and ¢; ;-1 = 1.
Thus, Pr{X; =i} = (1 — p1)p} in the steady state where p; = QA/u1. The same is true
for system 2, thus, Pr{Xs = j} = (1 — p2)p}, in the steady state where ps = \/puo.



Due to the independency of X7 and Xs,
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Part e) What is the probability that the first job to leave system 1 after time ¢ is the
same as the first job that entered the entire system after time ¢?7

Solution:

The first job that enters the system after time ¢ is the same as the first job to leave
system 1 after time ¢ if and only if X;(¢) = 0 (system 1 should be empty at time ¢, unless
other jobs will leave system 1 before the specified job) and the first entering job to the
whole system needs preprocessing and is routed to system 1 (and should need) which hap-
pens with probability ¢). Since these two events are independent, the probability of the
desired event will be (1 —p1)Q = (1 — %)Q

Part f) What is the probability that the first job to leave system 2 after time ¢ both
passed through system 1 and arrived at system 1 after time ¢?

Solution: This is the event that both systems are empty at time ¢ and the first arriving
job is routed to system 1 and is finished serving in system 1 before the first job without
preprocesing enters system 2. These three events are independent of each other.

The probability that both systems are empty at time ¢ in steady state is Pr{X;(t) = 0, Xa2(t) = 0} =
(1= p1)(1 = p2).

The probability that the first job is routed to system 1 is Q.

The service time of the first job in system 1 is called Y7 which is exponentially distributed
with rate p1 and the probability that the first job is finished before the first job without
preprocessing enters system 2 is Pr{Y; < Z} where Z is the r.v. which is the arrival time
of the first job that does not need preprocessing. it is also exponentially distributed with
rate (1 — Q)A. Thus, Pr{y; < Z} = 1114-(,{71—62)/\



Hence, the total probability of the described event is (1 — %)(1 - %)Qm
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