
Solutions to Homework 7 
6.262 Discrete Stochastic Processes 

MIT, Spring 2011 
Exercise 4.10: Consider a variation of an M/G/1 queueing system in which there is no 

facility to save waiting customers. Assume customers arrive according to a Poisson process 
of rate λ. If the server is busy, the customer departs and is lost forever; if the server is 
not busy, the customer enters service with a service time distribution function denoted by 
FY (y). 

Successive service times (for those customers that are served) are IID and independent 
of arrival times. Assume that customer number 0 arrives and enters service at time t = 0. 

a) Show that the sequence of times S1, S2, . . . at which successive customers enter ser­
vice are the renewal times of a renewal process. Show that each inter-renewal interval 
Xi = Si − Si 1 (where S0 = 0) is the sum of two independent random variables, Y− i + Ui 

where Yi is the ith service time; find the probability density of Ui. 

Solution: Let Y1 be the first service time, i.e., the time spent serving customer 0. 
Customers who arrive during (0, Y1] are lost, and, given that Y1 = y, the residual time 
until the next customer arrives is memoryless and exponential with rate λ. Thus the time 
X1 = S1 at which the next customer enters service is Y1 + U1 where U1 is exponential with 
rate λ, i.e., fU1 (u) = λ exp(−λu). 

At time X1, the arriving customer enters service, customers are dropped until X1 + Y2, 
and after an exponential interval U2 of rate λ a new customer enters service at time X1 +X2 

where X2 = Y2 +U2. Both Y2 and U2 are independent of X1, so X2 and X1 are independent. 
Since the Yi are IID and the Ui are IID, X1 and X2 are IID. In the same way, the sequence 
X1, X2, . . . , are IID intervals between successive services. Thus {Xi; i ≥ 1} is a sequence 
of inter-renewal intervals for a renewal process and S1, S2, . . . , are the renewal epochs. 

b) Assume that a reward (actually a cost in this case) of one unit is incurred for each 
customer turned away. Sketch the expected reward function as a function of time for the 
sample function of inter-renewal intervals and service intervals shown below; the expecta­
tion is to be taken over those (unshown) arrivals of customers that must be turned away. 
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Solution: Customers are turned away at rate λ during the service times, so that R(t), 
the reward (the reward at time t averaged over dropped customer arrivals but for a given 
sample path of services and residual times) is given by R(t) = λ for t in a service interval 
and R(t) = 0 otherwise. 
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Note that the number of arrivals within a service interval are dependent on the length 
of the service interval but independent of arrivals outside of that interval and independent 
of other service intervals. 

c) Let t 
R(τ )dτ 0 denote the accumulated reward (i.e., cost) from 0 to t and find the 

limit as t →∞ of (1/t) t 
R(τ)dτ . Explain (without any attempt to 0 b   e rigorous or formal) 

why this limit exists with probability 1. 

Solution: The reward within the nth inter-renewal interval (as a random variable over 
that interval) is Rn = λYn. Using Theorem 4.4.1, then, the sample average reward, WP1, 
is λE[Y ] 

E[Y ]+1/λ .

d) In the limit of large t, find the expected reward from time t until the next renewal. 
Hint: Sketch this expected reward as a function of t for a given sample of inter-renewal 
intervals and service intervals; then find the time-average. 

Solution: For the sample function above, the reward to the next inter-renewal (again 
averaged over droppped arrivals) is given by 

The reward over the nth inter-renewal interval is then λS2
n/2 so the sample path average 

of the expected reward per unit time is 

E [R(t)] λE   Y 2

= 
X 2(Y + 1/λ) 

e) Now assume that the arrivals are deterministic, with the first arrival at time 0 and the 
nth arrival at time n − 1. Does the sequence of times S1, S2, . . . at which subsequent cus­
tomers start service still constitute the renewal times of a renewal process? Draw a sketch 
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of arrivals, departures, and service time intervals. Again find lim   dτ→∞

�� t 
t R τ  /t0 ( )

Solution: Since the arrivals are deterministic at unit intervals, the packet to b

�
.

e served 
at the completion of Y1 is the packet arriving at �Y1� (the problem statement was not 
sufficiently precise to specify what happends if a service completion and a customer arrival 
are simultaneous, so we assume here that such a customer is served). The customers 
arriving from time 1 to �Y1� − 1 are then dropped as illustrated below. 
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Finding the sample path average as before, 

E [R(t)] E [
= 

�Y � − 1]

X E [�Y �]


Exercise 4.12: 

In order to find the sample-average distribution function, FZ (z) of the age of a renewal 
process, we can define a reward function similar to the one in example 4.4.5 as follows: 

1; Z(t)˜   z 
R(t) = R(Z(t), X(t)) = 

≤
0; otherwise 

We see that R(t) has positive value only over the first z unit of interval, thus Rn = 
min(z, Xn). Hence, 

∞ z 

E[Rn] = E[min(z, Xn)] = Pr{min(X, z) > x} dx = Pr X > x  dx 
x=0 x=0 

{ }

Now we know that FZ (
t 

z) = limt  1/t R(τ) dτ is the time-average fraction of 0 time →∞  
that the age is less than or equal to z. From theorem 4.4.1, we get: 

E[Rn] 1 z 

FZ (z) = = Pr{X > x} dx , WP1 
X X x=0 

Exercise 4.14: 

a) We define the sequence of random variables Xi corresponding to each outcome of the 
Bernouli experiment with probability of success of p. So, Xi’s are IID and Xi = 1 with 
probability p and Xi = 0 with probability 1 − p. Thus, E[X] = p. 
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Sn = X1 + X2 + · · · + Xn is the number of successes of Bernouli process in first n
experiments. 

We define J the stopping time as the number of trials up to and including the kth success. 
(Can you prove that it is actually a valid stopping time?). So we know that SJ = k since 
the process is stopped when there has been k successes in the process. Hence, E[SJ ] = k. 

Wald equality says that E[SJ ] = E[X]E[J ]. Thus, the expected number of trials up to 
and including the kth success is 

E[SJ ] k
E[J ] = = 

E[X] p 

b) First, we calculate the expected number of trials up to and including the first success 
in the Bernouli process (We call this random variable T ). 

E[T ] = E[T |X1 = 1]Pr{(} X1 = 1) + E[T |X1 = 0]Pr{(} X1 = 0) 
= 1 × p + (1 + E[T ])(1 − p) 

1
E[T ] = 

p 

Since the trials of this experiment are independent, the expected time up to and includ­
ing the kth success is k times the expected time up to and including first success. This is 
the exact same result as part (a) which says E[J ] = k/p 

Exercise 4.15: 

a) The weak law is sufficient. J is the smallest value of n for which Sn = X1 + X2 + 
· · ·+Xn ≤ −d. Thus, Pr{J > n} = Pr{�S1 > −d, S2 > −d, · · · , Sn >  Pr{Sn >  −d} ≤ −d}.
And we know that Pr{Sn > −d}� = Pr S /n  X > X  d/n . The weak law, on the  n −  − −
other hand, says that limn  Pr |Sn/n − X| ≥ �

�
 = 0 for any �

�
> 0. Taking � = →∞ −X/2, 

and restricting attention to n ≥ d/�, we have: 

      
Pr 

�
Sn/n − X > −X − d/n

�
 ≤ Pr 

�
Sn/n − X ≥ � 

�
≤ Pr 

�
|Sn/n − X| ≥ � 

�
→ 0 

b) One stops playing on trial J = n if one’s capital reaches 0 for the first time on 
the nth trial, i.e., if Sn = −d for the first time at trial n. This is clearly a function of 
X1, X2, . . . , Xn, so J is a stopping rule. Note that stopping occurs exactly on reaching 
−d since Sn can decrease with n only in increments of -1 and Sn is always integer. Thus 
SJ = −d 
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Using Wald’s equality, which is valid since E[J ] < ∞, we have 

d 
E[J ] = 

−
X 

which is positive since X is negative. You should note from the exercises we have done 
with Wald’s equality that it is usually used to solve for E[J ] after determining E[SJ ]. 

Exercise 4.17: 

Let J = min{n |Sn≤b or Sn≥a}, where a is a positive integer, b is a negative integer, 
and Sn = X1 + X2 + · · · + Xn. Assume that {Xi; i≥1} is a set of zero mean IID rv’s that 
can take on only the set of values {−1, 0, +1}, each with positive probability. 

a) Is J a stopping rule? Why or why not? Hint: The more difficult part of this is to 
argue that J is a random variable (i.e., non-defective); you do not need to construct a 
proof of this, but try to argue why it must be true. 

Solution: For J to be a stopping trial, it must be a random variable and also IJ=n 

must be a function of X1, . . . , Xn. Now Sn is a function of X1, . . . , Xn, so the event that 
Sn ≥ a or Sn ≤ b is a function of Sn and the first n at which this occurs is a function 
of S1, . . . , Sn. Thus IJ=n must be a function of X1, . . . , Xn. For J to be a rv, we must 
show that limn  Pr{J ≤ n} = 1 The central limit theorem states that (Sn − nX)/

√
nσ →∞

approaches a normalized Gaussian rv in distribution as n 
√

→ ∞. Since X = 0, Sn/ nσ 
must approach normal. Now both a/

√
nσ and b/

√
nσ approach 0, so the probability that 

Sn (i.e., the process without stopping) is between these limits goes to 0 as n →∞. Thus 
the probability that the process has not stopped by time n goes to 0 as n →∞. 

An alternate approach here is to model {Sn; n ≥ 1} for the stopped process as a Markov 
chain where a and b are recurrent states and the other states are transient. Then we know 
that one of the recurrent states are reached eventually with probability 1. 

b) What are the possible values of SJ ? 

Solution: Since Sn can change only in integer steps, it cannot exceed a without first 
equaling a and it cannot be less than b without first equaling b. Thus SJ is only a or b. 

c) Find an expression for E [SJ ] in terms of p, a, and b, where p = Pr{SJ ≥ a}. 

Solution: E [SJ ] = aPr{SJ = a} + bPr{SJ = b} = pa + (1 − p)b 

d) Find an expression for E [SJ ] from Wald’s equality. Use this to solve for p. 

Solution: Since J is a stopping trial for X1, X2, . . . and the Xi are IID, we have E [SJ ] = 
XE [J ]. Since X = 0, we conclude that E [SJ ] = 0. Combining this with part c), we have 
0 = pa + (1 − p)b, so p = −b/(a − b). This is easier to interpret as p = |b|/(a + |b|). 
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This approach works only for X = 0, but we will see in Chapter 7 how to solve the 
problem for an arbitrary distribution on X. We also note that the solution is independent 
of the probability of the self loop. Finally we note that this helps explain the peculiar 
behavior of the ‘stop when you’re ahead’ example. The negative threshold b represents 
the capital of the gambler in that example and shows that as b → −∞, the probability 
of reaching the threshold a increases, but at the expense of a larger catastrophe if the 
gamblers capital is wiped out. 

Exercise 4.28 

b) Given that the first bus arrives at x, the number of customers picked up is the number 
of Poisson customer arrivals in (0, x]. The expected number of these arrivals is λx, so the 
expected number picked up is λx. Similarly, E[R(t)|first bus at x] = λt for 0 < t < x. 
Thus, � x  x 

E[ R(t) dt

�
 

0
|X1 = x] = λt dt = λx2/2

0 

c) From theorem 4.4.1, � 
1 t E[Rn] λE[X2]

lim R(τ) dτ = = 
t→∞ t 0 E[X] 2E[X] 

Where we have used part (b), averaged over X1, to see that E[Rn] = E[R1] = λE[X2]/2. 
This is the time average number of waiting customers. Assuming that FX is non-arithmetic, 
this is limt  E[R(t)], which is the ensemble average number of waiting customers at time →∞
t in the limit t →∞. (i.e., in steady state). 

d) Consider a reward function with a reward for each customer equal to the wait of 
that customer. Given that a customer arrives at time t, the wait of that customer is 

a) 
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the residual life Y (t) of the bus arrival process. Averaging over the Poisson customer ar­
rivals for a giv� en sample function of the bus arrival process, the time average reward is  
lim t

 (λ/t)  
t Y (τ) dτ which is λE[X2
→∞ 0 with   ]/(2E[X])  probability 1. Since the customer

arrival rate λ, the time average wait per customer is E[X2]/(2E[X]). An alternate approach 
is to observe that Little’s relation holds here. The time average expected wait per customer 
is the time average number in the system divided by the arrival rate λ, which, using part 
(c), is E[X2]/(2E[X]). 

e) There are no customers at the bus stop from the time of a bus arrival until the next 
customer arrival. Consider a reward rate of 1 in each such period. Let Xn be the n-th, 
inter-renewal period and let Un be the time from Sn (the start of the n-th renewal period) 
until the first subsequent customer arrival. The aggregate reward in the n-th renewal 
period is then min(Xn, Un). Since Xn and Un are independent, Pr{min(Xn, Un) > t} = 
Pr{Xn > t} Pr{Un > t}. We then have �  ∞ ∞ 

E[min(Xn, Un)] = Pr{min(Xn, Un) > t} dt = 
�

Pr{  X λt
n > t} e− dt 

0 0 
Using� theorem 4.4.1 again, the fraction of time there are no customers at the bus stop  

is 1 ∞ Pr{Xn > t} e−λtd  then  t. Note that if E[Xn] � 1/λ, e λt
[X ]  

− ≈ 1 for t such 0 that E n

Pr{Xn > t} is appreciable. Thus, �  ∞
 

∞
Pr{Xn > t} e−λt dt ≈ 

�
Pr{Xn > t} dt = E[Xn] 

0 0 
So the fraction of time with no customers is approximately 1, which makes sense. If the 
bus arrivals are Poisson with rate µ, the E[min(Xn, Un)] = 1/(λ + µ), so the fraction of 
time with no customers is µ/(λ + µ). 
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