
Solutions to Homework 5 
6.262 Discrete Stochastic Processes 

MIT, Spring 2011 
Solution to Exercise 2.28: 

Suppose that the states are numbered so that state 1 to J1 are in the recurrent class 1, 
J1 + 1 to J1 + J2 in recurrent class 2, etc. Thus, [P ] has the following form: ⎡  

[⎢ P1] 0 0 0 

[P ] = ⎢ 0 [P ] 0 0  ⎣ 2

0 0 0

⎤
· · · 

[Pt1] [Pt2] · · · [Ptt]

⎥
As in exercise�  3.17 part (d), [Ptt]� has  

⎥
no eigenvalue of value

⎦
 1, and thus in any left eigen­  

vector π = π̂(1), π̂(2), · · · , π̂(r), π̂(t) of eigenvalue 1, we have π̂(t) = 0. This means that π̂(i) 

must be a left eigenvector of [Pi] for each  i, 1 ≤ i ≤ r. Since π̂(i) can be given an arbitrary 
scale factor for each i, we get exactly r independent left� eigenvectors, each a probability   
vector as desired. We take these eigenvectors to be π(i) = 0, · · · , 0, π̂(i), 0, · · · , 0 , i.e., zero 
outside of class i and π̂(i) inside of class i. 

Let (i) 
vj = Pr {recurrent class i is ever reached |X(0) = j}. Note   that (i)

v =

�
j  1 for j in

the i-th recurrent class and   that (i)
vj = 0 for j in any other recurrent class. For j in a 

transient class, we have the relation: 
 

(i) (i)
vj = 

�
pjkvk 

k 

In other words, the probability of going to class i is the sum, over all states, of the prob­
ability of going to state k at time 1 and then ever going to class i from state k. We can 

(i)  (   
rewrite this as vj = i)

k  pjkv  + k  class i pjk. Since the matrix [Ptt] has no  ∈T k eigenvalue∈
equal to 1, [I − Ptt] is

�
 non-singular,

�
 and this set of equations, over all transient j, has a 

unique solution. That solution,   along with (i)
vj over the recurrent j yields a vector v(i) 

that is a right eigenvector of [P ]. There is one such eigenvector for each recurrent class 
and there can be no more independent right eigenvectors because there are no more left 
eigenvectors. 

Exercise 3.14: 

Answer the following questions for the following stochastic matrix [P ] 
 

1/2 1/2 0 
[P ] = 

⎡ ⎤⎣ 0 1/2 1/2 ⎦ . 
0 0 1 

a) Find [P n] in closed form for arbitrary n > 1. 
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Solution: There are several approaches here. We first give the brute-force solution of 
simply multiplying [P ] by itself multiple times (which is reasonable for a first look), and 
then give the elegant solution. ⎡    

1/2 1/2 0 1/2 1/2 0 1/4 2/4 1/4 
[P 2] = ⎣ 0 1/2 1/2 

⎤ ⎡⎦ /2 1/2 

⎤⎣ 0 1 ⎦ = 

⎡
0 4  . 

0 0
⎣ 1/4 3/  

1 0 0 1 0 0 1 

⎤

   

⎦
⎡  

1/2 1/2 0 1/4 2/4 1/4 1/8 3/8 5/8 
[P 3] = ⎣ 0 1/2 1/2 

⎤ ⎡
 0 1/4 3/4 

⎤
 = 

⎡
 0 1/8 7/4  . 

0 0 1 0 0 1 0 0 1 

⎤

We could proceed to [P 4], but it 

⎦
is 

⎣
natural to stop and

⎦
 think

⎣
 whether this is

⎦
 telling us 

something. The bottom row of [P n] is clearly (0, 0, 1) for all n, and we can easily either 
reason or guess that the first two main diagonal elements are 2−n . The final column is 
whatever is required to make the rows sum to 1. The only questionable element is P12 n . We
guess that is n2−n and verify it by induction, ⎡   

1/2 1/2 0 
⎤ ⎡

2−n   n2−n 1 − (n+1)2!−n

[P n+1] = [P ] [P n] = ⎣ 0 1/2 1/2  0 2−n 1 − 2−n 

⎤
 

0 0 1 0 0 1⎡  
 

2−n−1 (n+1)2−n−1 1 − (n

⎦
+3)2

⎣
−n−1 

⎦
= 2−n 

⎤⎣ 0 2−n 1 − ⎦ . 
0 0 1 

This solution is not very satisfying, first because it is tedious, second because it required 
a guess that was not very well motivated, and third because no clear rhyme or reason 
emerged. 

The elegant solution, which can be solved with no equations, requires looking at the 
graph of the Markov chain, 

1� 1/2 1/2 
 �� 2 �� 3

� 

� 

� 

�
� 

1/2 1/2 1 

It is now clear that P11!n = 2−n is the probability of taking the lower loop for ! n 
successive steps starting in state 1. Similarly P n 

22 = 2−n is the probability of taking the
lower loop at state 2 for n successive steps. 

Finally, P n 
12 is the probability of taking the transition from state 1 to 2 exactly once out

of the n transitions starting in state 1 and of staying in the same state for the other n − 1 
transitions. There are n such paths, corresponding to the n possible steps at which the 
1 → 2 transition can occur, and each path has probability 2−n . Thus P n 

12 = n2−n, and we
‘see’ why this factor of n appears. The transitions Pn 

i3 are then chosen to make the rows 
sum to 1, yielding the same solution as above.. 

b) Find all distinct eigenvalues and the multiplicity of each distinct eigenvalue for [P ]. 
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Solution: Use the following equation to find the determinant of [P − λI] and note that 
the only permutation of the columns that gives a non-zero value is the main diagonal. � 

det A = ± 
µ

1

�J  
Ai,µ(i) 

i=1 

Thus det[P − ΛI] = ( − λ 2
2 ) (1 − λ). It follows that λ = 1 is an eigenvalue of multiplicity 

1 and λ = 1/2 is an eigenvalue of multiplicity 2. 
c) Find a right eigenvector for each distinct eigenvalue, and show that the eigenvalue of 

multiplicity 2 does not have 2 linearly independent eigenvectors. 
Solution: For any Markov chain, �e = (1, 1, 1)T is a right eigenvector. This is unique 

here within a scale factor, since λ = 1 has multiplicity 1. For ννν to be a right eigenvector 
of eigenvalue 1/2, it must satisfy 

1 1 1 
ν1 + ν2 + 0ν

2 2 3 = ν
2 1

1 1 1
0ν1 + ν2 + ν3 = ν

2 2 2 2

1 
ν3 = ν

2 3

From the first equation, ν2 = 0 and from the third ν3 = 0, so ν2 = 1 is the right eigenvector, 
unique within a scale factor. 

d) Use (c) to show that there is no diagonal matrix [Λ] and no invertible matrix [U ] for 
which [P ][U ] = [U ][Λ]. 

Solution: Letting ννν1, ννν2, ννν3 be the columns of an hypothesized matrix [U ], we see that 
[P ][U ] = [U ][Λ] can be written out as [P ]νννi = λ1νννi for i = 1, 2, 3. For [U ] to be invertible, 
ννν1, ννν2, ννν3 must be linearly independent eigenvectors of [P ]. Part (c) however showed that 
3 such eigenvectors do not exist. 

e) Rederive the result of part d) using the result of a) rather than c). 
Solution: If the [U ] and� [Λ] of part (d) exist, then [P n] = [U ][Λn][U−1]. Then, as in 

(3.30) of the text, [ 3    P n] = λnννν(i)πππ(i)
=1  where ννν(i)

i i is the ith column of [U ] and πππ(i) is the 
ith row of [U−1]. Since P n = n(1/2)n

12 , the factor of n! means that it cannot have the form
aλn  

 + bλn
1 2 + cλn 

3 for any choice of λ1, λ2, λ3, a, b, c. 
Note that the argument here is quite general. If [P n] has any terms containing a poly­

nomial in n times λn
i , then the eigenvectors can’t span the space and a Jordan form 

decomposition is required. 

Exercise 3.15: 

a) Let [Ji] be a 3 by 3 block of a Jordan form, i.e., 

[

⎡  
λi 1 0 

J  i] = ⎣ 0 λi 1 

⎤⎦ . 
0 0 λi 
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���1� 1
 �� 2� 1 

 �� 3 
 ��  k!
�
 � � � 
λ λ 

�
λ 

· · · �
λ 

 

Show that the nth power of [Ji] is given by 
  
λn n 1 n λn

i nλi 
− 2 

2 i 
−

[Jn n  
i ] = 

⎡
 0 n 

�
1 λ nλ

�
−

⎤
. i i

0 0 λn
i 

Hint: Perhaps the easiest way is to

⎣
 calculate [J2

⎦
i ] and [J3

i ] and then use iteration. 
Solution: It is probably worthwhile to multiply [Ji] by itself one or two times to gain 

familiarity with the problem, but note that the proposed formula for [Jn
i ] is equal to [Ji] 

for n = 1, so we can use induction to show that it is correct for all larger n. That is, for 
each n ≥ 1, we assume the given formula for [Jn

i ] is correct and demonstrate that [Jn] [Jn
i i ]

is the given formula evaluated at n + 1. We suppress the subscript i in the evaluation. 
We start with the elements on the first row, i.e., � 

J n  λn
1jJj1 = λ · = +1 λn

�j 
 

n J J =  n−1 λ · nλ + 1 · λn ( n
1j j2 =  n+1)λ

j � �     
n n

= 2 n· + 1 ·  
j  

�
λ n +1 −  J1jJ 3 λ  nλn−1 = 

2 2 
j 

� �
λn−1

In the last equation, we used � �   
n n(n − 1) n(n + 1) 

+ n = + n = = 
2 2 2

         

�
n + 1

2

�
 

 

The elements in the second and third row can be handled the same way, although with 
slightly less work. The solution in par! t b) provides a more elegant and more general 
solution. 

b) Generalize a) to a k by k block of a Jordan form J . Note that the nth power of an 
entire Jordan form is composed of these blocks along the diagonal of the matrix. 

Solution: This is rather difficult unless looked at in just the right way, but the right way 
is quite instructive and often useful. Thus we hope you didn’t spin your wheels too much 
on this, but hope you will learn from the solution. The idea comes from the elegant way 
to solve part a) of Exercise 3.14, namely taking a graphical approach rather than a matrix 
multiplication approach. Forgetting for the moment that J is not a stochastic matrix, we 
can draw its graph, i.e., the representation of the nonzero elements of the matrix, as 

Each edge, say from i → j in the graph, represents a nonzero element of J and is labelled 
as Jij . If we look at [J2], then J2 

ij = 
�

k JikJkj is the sum over the walks of length 2 in 
the graph of the ‘measure’ of that walk, where the measure of a walk is the product of the 
labels on the edges of that walk. Similarly, we can see that Jn 

ij is the sum over walks of 

4



 

length  of the product of the labels for that walk. In short, n n Jij can be found from the 
graph in the same way as for stochastic matrices; we simply ignore the fact that the out! 
going edges from each node do not sum to 1. 

We can now see immediately how to evaluate these elements. For Jn 
ij , we must look at 

all the walks of length n that go from i to j. For i > j, the number is 0, so we assume j ≥ i. 
Each such walk must include j − i rightward transitions and thus must include n − j + i 
self loops. Thus the measure of each such walk is n−j+i λ . The number of such walks is 
the number of w�ays� that    rightward transitions can be selected out the  transitions   j − i n
altogether, i.e., n 

 . i Thus, the general formula j is−
  

Jn = 

�
n

�
λj−i 

ij for j > i
j − i 

c) Let [P ] be a stochastic matrix represented by a Jordan form [J ] as [P ] = U [J ][U−1] and 
consider [U−1][P ][U ] = [J ]. Show that any repeated eigenvalue of [P ] that is represented 
by a Jordan block of 2 by 2 or more must be strictly less than 1. Hint: Upper bound the 
elements of [U−1][P n][U ]! by taking the magnitude of the elements of [U ] and [U−!1] an d 
upper bounding each element of a stochastic matrix by 1. 

Solution: Each element of the matrix [U−1][P n][U ] is a sum of products of terms and 
the magnitude of that sum is upper bounded by the sum of products of the magnitudes of 
the terms. Representing the matrix whose elements are the magnitudes of a matrix [U ] as 
[|U |], and recognizing that [P n] = [|P n|] since its elements are nonnegative, we have 

[|Jn|] ≤ [|U−1|][P n][|U |] ≤ [|U−1|][M ][|U |] 
where [M ] is a matrix whose elements are all equal to 1. 

The matrix on the right is independent of n, so each of its elements is simply a finite 
number. If [P ] has an eigenvalue λ of magnitude 1 whose multiplicity exceeds its number of 
linearly independent eigenvectors, then [Jn] contains an element nλn−1 of magnitude n, and 
for large enough n, this is larger than the finite number above, yielding a contradiction. 
Thus, for any stochastic ! matrix, any repeated eigenvalue with a defective number of 
linearly independent eigenvectors has a magnitude strictly less than 1. 

d) Let λs be the eigenvalue of largest magnitude less than 1. Assume that the Jordan 
blocks for λs are at most of size k. Show that each ergodic class of [P ] converges at least 
as fast as nkλk 

s .
Solution: There was a typo in the original problem statement; convergence as  nkλk

does not converge at all with increasing  n. What was intended was nkλn
s . What we want to 

show, then, is that |[P n] − �eπππ| ≤ bnk |λn
s | for some sufficiently large constant b depending

on [P ] but not n. 
The states of an ergodic class have no transitions out, and for questions of convergence 

within the class we can ignore transitions in. Thus we will get rid of some excess notation 
by simply assuming an ergodic Markov chain. Thus there is a single eigenvalue equal to 1 
and all other eigenvalues are strictly less than 1. The largest such in magnitude is denoted 
as λs. Assume that the eigenvalues are arranged in [J ] in decreasing magnitude, so that 
J11 = 1. 
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For all n, we have [P n] = [U ][Jn][U−1]. Note that limn [Jn] is a matrix with J→∞ ij = 0 
except for i = j = 1. Thus it can be seen that the first column of [U ] is �e and the first row 
of [U−1] is πππ. It follows from this that [P n]  �eπππ = [U ][J̃ ˜− n][U−1] where [Jn] is the same as 
[Jn] except that the eigenvalue 1 has been replaced by 0. This means, however, that the 
magnitude of each element of [J̃n] is upper bounded by nkλn

s
−k . It follows that when the 

magnitude of the elements of [U ][J̃n][U−1] the resulting elements are at most bnk λ n
s for 

large enough b (the value of b takes account of [U ], [U−1
|

], k
|

 and λ−s ). 

Exercise 3.22 

a) Here state 1 is split into to states 1 and 1� where state 1 can be the initial state and 
state 1� is the trapping state. You observe that there is a transition from state 1 to state 
1� in the modified Markov chain which corresponds to the self transition of state 1 in the 
original Markov chain. You should assign reward 1 to states 1 to 4 and reward 0 to state 
1� in order to be able to find the expected first passage time.

 �� ��2

�� ���� ��1 
�� ���� ��3 

�� ���� ��1�

��
4 
��
 

�� ���� ����
��
����

����
�� ��

���� �� ����
b) If the initial state is state 1, with probability p11 it takes one step to go into state 

1 again. But with probability p1j , the expected recurrence time will be 1 + vj . Thus the 
expected first recurrence time will be: 

M  M  
v1 = p11 + p1j (1 + vj ) = 1 + p1j vj 

j=2 j=2 

You can see the same thing in the

�
 modified Markov chain

�
 in which vj for j = 1, · · · , M

is defined as the expected first passage time from state j to state 1�. Thus, for all j = 
1, · · · , M ,

M  M  
vj = pj1� + 

�
pjk(1 + vj ) = 1 + 

�
pjkvk 

k=2 k=2 

So for j = 1, 

v
�M  

1 = 1 + p1j vj 

j=2 
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Exercise 3.26 

a) In this Markov reward system, state 1 is the trapping state, So the reward values 
will be: r = (r1, r2, r3) = (0, 1, 1). Thus set of rewards will help in counting the number of 
transitions to finally get trapped in state 1 and then it will stay in state 1 forever and the 
reward will not increase anymore (because r1 = 0). 

We know that 

vi(n) = E[R(Xm) + R(X  
 

m+1) + ·  
 
· ·+ R(Xm+n 1)|X  − m = i]

= + p r n 1 ri 

�
ij j + · · · + 

�
pij
− rj

i j 

Note that each increase in n adds one additional term to this expression, and thus the 
expression can be written as: 



( ) = (  − 1) + 

�
 n−1 vi n vi n pij rj

j 

In vector form, this is 

�v(n) = �v(n − 1) + [P n−1]�r, 

which gives the desired expression for �v(n) in terms of �v(n − 1) 
An alternate, and perfectly acceptable approach, which gives an alternate expression for 

�v in terms of �v(n − 1) is: 

n−1 
�v(n) = �r + [P ]�r + · · · + [P n−1]�r = [P h]�r

h=0 

= [P ]�v(n − 1) + �r 

�

b) We start by following the first approach in part a), which requires us to calculate 
[P n]. Noting that state 2 can never lead to state 3, we note that P n = (1/2)n 

12 . Using this 
in finding the rest of [P n], some calculation leads to : ⎡ 

1 0 0 

[P ] =


⎤⎢⎢⎢⎢ 1 1 ⎣ 2 2 0



1

⎥⎥⎥⎦

1 1  
4 2 4 

⎥
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[P 

⎡
1

⎤

 0 0 

n] = 

⎢⎢⎢⎢ 1 − 1 1  2n 2n 0

 


1 − 2
n+1 1 2n

⎥
1 1 

⎥
22n
−
 22n

−
−1 22n 

⎥⎥
For each n ≥ 1, �v(n) can be calculated:

⎣



⎦
 

0


�v(n) = �v(n − 1) +


⎡
⎢

1 ⎣ 2n 1 

⎤⎢⎢⎢ −

 


2n−1 

⎥⎥
22n−2 

⎥⎦⎥

We know that �v(0) = �0. Thus for n ≥ 1, 



n
n 

�v

⎡
0
 0
 0
� ⎢⎢⎢  

( ) = ⎢ 1 1 
 1 n 2h 1 

⎤ ⎡⎥⎥⎥ ⎢⎢ �⎥ =


⎢⎢ h=1 2h 1 

⎤
⎥⎥⎥ =


⎡
⎢⎢⎢⎢⎥ 2(1 − 2n )−

⎤
 ⎣
 ⎦
 ⎣ −

h=1 
 � ⎦
 ⎣


⎥



h 
2 −1 n 2h 8
 

−1 
 

− 1 
−2 + 1 

− h=1 − 3 2n  3×4n−1 22 2 22

⎥⎥
h h 2


 


⎦⎥
0 

As n →∞, we get the lim

⎡

n  �v(n) = 2 

⎤
.→∞

8 
3 

An alternative way of looking at this v

⎣
ector

⎦
 is by studying the following equation: 

�v(n) = [P ]�v(n − 1) + �r 

Considering that for all n, v1(n) = 0, we would have: ⎡ 
0


�( ) = ⎣ 1 v n 
 
 v 22 (n − 1) + 1 

1 v2(n − 1) + 1 v3(n  

⎤
− 4 1) + 1 2  

⎦

Which gives the same result in closed form for v(�n) with some tedious calculations. 
Each element vj (n) is the expected first passage time of the Markov chain corresponding 

to the first time that the Markov chain ends in state 1 condition on the assumption that 
it is in state j at n = 0. 

c) Eq. 3.32 in the text, �v = �t + [P ]�v is the same as the second alternative solution in 
part a), with the limit n → ∞ already taken. The solution here shows that such a limit 
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actually exists. As a direct argument for this limit to exist, note that it should be a fixed 
point for the equation. Thus, 

v = [P ]v + r 

(I − P )v = r 

⎡  
0 0 0 0 ⎣ −1 1 0 

⎤ ⎡
	 1 

⎤⎦ v = ⎣ ⎦ 
2 2

−1 3 1
4 −
1 

2 4

Letting v1(n) = 0, we would easily get v2 = 2 and  v 8
3 =
 3 .
 You observe that the fixed


point of the equation v = [P ]v + r is the limit of the expected aggregate reward of the 
Markov chain. 

Exercise 4.1 

a) WLLN says that S converges in probability to nX̄ 
n  meaning that for each s > 0 

lim Pr{|S ¯ 
n 

n
− nX| > s} = 0 

→∞ 

. 
lim Pr{  nX̄ − s ≤ Sn ≤ nX̄ + s} = 1 

n→∞ 

For any fixed  t > 0 and s > 0, for large enough n, t < n X̄  ¯− s (assuming that X > 0). 
Thus, 

lim Pr{S ¯ 
n ≤ t} < lim [1 − Pr{nX − s ¯

n→∞ n→∞ 
≤ Sn ≤ nX + s}] = 0 

b) We know that for each n and t, these events are equivalent to each other: 

{Sn ≤ t} = {N(t) ≥ n} 

. It is also proved in Lemma 4.3.1 that limt→∞ N(t) = ∞ with probability 1. So with 
probability 1, N(t) increases through all the nonnegative integers as t increase from 0 to 
∞. So we can write: 

lim Pr{N(t) ≥ n} = lim Pr{N(t) ≥ n} = lim Pr
n

{Sn ≤ t} = 0 
→∞	 t→∞ t→∞ 

. So, limn  Pr{N(t) < n} = 1 meaning that N(t) is a non-defective random variable for →∞
each t > 0. 

c) First, we can get some bound on the value of E[X̆i] = E[min(Xi, b)]: 
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 ∞
E[x̆] = 

�
x̆ dF (x̆)�0 

∞ 

= min(x, b) dF (x̆) �0 
 b  ∞ 

= min(x, b) dF (x) + 
�

min(x, b) dF (x) 

=
�0 b 

 b  ∞ 

 x dF (x) + b dF (x) 
0� b 

 b 

�
 ∞ 

≤ b dF (x) + b 
0 

�
dF (x) 

b 

≤ b 

We see that E[X̆] ≤ b is finite. As proved in part (a) and (b), the finiteness of E[X̆i] is 
enough for N̆(t) to be non-defective. 

Having X̆� �i = min(Xi, b) for all i, we know that X̆i ≤ Xi. Thus, for each n, S̆n = 
n  
i  X̆i ≤ n ˘
=1 i=1 Xi = Sn. So for each n ≥ 1, Sn ≤ Sn. We can say that the following 

relations are held for these events for all n and t: 

{N(t) ≥ n} = {Sn ≤ t} ⊆ {S ̆ n ≤ t} = {N̆(t) ≥ n}
For each n and t, {N(t) ≥ n

˘
} {N ˘⊆ (t) ≥ n}. This mens that for all t, N(t) ≤ 

N(t). It also means that Pr{N(t) ≥ n} ≤ Pr ˘{N(t) ≥ n}. So, limn  Pr  →∞ {N(t) ≥ n} ≤
limn  Pr ˘{N(t) ≥ n} = 0. Thus, N̆(t) is non-defective too and lim→∞ n Pr→∞ {N(t) ≥ n} = 
0. 
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