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MIT, Spring 2011 

Solution to Exercise 2.28: 

The purpose of this problem is to illustrate that for an arrival process with independent 
but not identically distributed interarrival intervals, X1, X2, . . . ,, the number of arrivals 
N(t) in the interval (0, t] can be a defective rv. In other words, the ‘counting process’ is 
not a stochastic process according to our definitions. This illustrates that it is necessary 
to prove that the counting rv’s for a renewal process are actually rv’s. 

a) Let the distribution function of the ith interarrival interval for an arrival process be 
FXi (x

i
i) = 1 − exp(−α− xi) for some fixed α ∈ (0, 1). Let Sn = X1 + · · · Xn and show that 

α(1 
E[Sn] = 

− αn) 
.

1 − α 

b) Sketch a ‘reasonable’ sample function for N(t). 
c) Find σ2 

Sn 
. 

d) Use the Chebyshev inequality on Pr Sn ≥ t to find an upper bound on Pr N(t) ≤ n 
that is smaller than 1 for all n and for large enough t. Use this to show that N(t) is 
defective for large enough t. 

SOLUTION: a) Each Xi is an exponential rv, of rate αi, so E[Xi] = αi . Thus 

E[Sn] = α + α2 + · · · n α .

Recalling that 1 + α + α2 + · · · = 1/(1 − α),

E[Sn] = α(1 + α + · · · αn−1)
α(1 − αn) α 

= <
1 − α 1 − α 

In other words, not only is E[Xi] decaying to 0 geometrically with increasing i, but E[Sn] 
is upper bounded, for all n, by α/(1 − α). 

b) Since the expected interarrival times are decaying geometrically and the expected 
arrival epochs are bounded for all n, it is reasonable for a sample path to have the following 
shape: 

N(t) 

t 
0 S1 S2 S3 
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Note that the question here is not precise (there are obviously many sample paths, and 
which are ‘reasonable’ is a matter of interpretation). The reason for drawing such sketches 
is to acquire understanding to guide the solution to the following parts of the problem. 

c) Since Xi is exponential,  σ2 = α2i 
X . Since the Xi i 

are independent, 
2 = 2 + 2   σ

 
σ σ + 2

Sn X1 X2 
σXn

= α2 

· · ·
+ α4 + · · · + α2n 

= α2(1 + α2 + · · · α2(n−1))
α2(1 − α2n)  α2

= <
1 − α2 1 − α2 

d) The figure suggests (but does not prove) that for typical sample functions (and in 
particular for a set of sample functions of nonzero probability), N(t) goes to infinity for 
finite values of t. If the probability that N(t) ≤ n (for a given t) is bounded, independent 
of n, by a number strictly less than 1, then that N(t) is a defective rv rather than a true 
rv. 

The problem suggests using the Chebyshev bound to prove this, but the Markov bound 
is both simpler and also shows that N(t) is defective for smaller values of t than established 
by Chebyshev. Thus we first use Markov and then use Chebyshev. By Markov, 

¯ S α
Pr{Sn ≥ t} ≤ n 

t 
≤ 

t(1 − α) 
α

Pr{N(t) < n} = Pr{Sn > t} ≤ Pr{Sn ≥ t} ≤ 
t(1 − α) 

where we have used Eq. 2.3 in the text. Since this is valid for all n, it is also valid for 
Pr N(t) ≤ n. For any t > α/(1 −  α), we see that α < 1. Thus N(t) is defective for  t(1−α) any
such t, i.e., for any t greater than limn→∞ ESn. 

Now to use Chebyshev, note that 

Pr S  t  = Pr (S  S̄ ) ¯{ n ≥ } { n − n ≥ t −  Sn}
¯≤ Pr{| −  | ≥  − ¯ Sn Sn t Sn

2 

} 

σ
≤ Sn

(t − S̄ 
n)2 

Now σ2 
S is increasing in n to the limit σ2 = α2/(1  α2). Also S̄

n
−  

n is increasing to the 
 ∞

limit S̄ = α/(1  α). Thus (t   S̄ )−2) is also increasing in n, and ∞ − − n

σ2 

Pr{N(t) > n} ≤ Pr{  Sn ≤ t} ≤ ∞ for all n
(t − S )2 ∞

Thus Pr{N(t) ≥ n} is bounded for all n by a number less than 1 (and thus N(t) is defective) 
if t ¯−  S σ∞ > , i.e., if t > α  σ∞ 1 α + .−  ∞

Note that this result is weaker (and considerably more complicated) than that using 
the Markov bound. Actually, by working a good deal harder, it can be shown that N(t) 
is defective for all t > 0. The outline of the argument is as follows: for any given t, 

2



 

we choose an� m such that Pr Sm ≤ t/2 > 0 and such that Pr S  − Sm ≤ t/2 > 0 where ∞
S∞ − Sm = i

∞
=m+1 Xi. The second inequality can be satisfied for m large enough by 

the Markov inequality. The first inequality is then satisfied since Sm has a density that is 
positive for t > 0. 

Solution to Exercise 3.2: 

a) Based on the definition of the recurrent states, if a state is accessible from all the states 
that are accessible from it, (i.e., if for all i2 that i1 → i2, we also have i2 → i1), the state i1 

is called recurrent. So if a state is not recurrent (i.e., it is transient), there should exist at 
least one state i2 that is accessible from i1 (i1 → i2) but i1 is not accessible from it (i2 � i1). 

b) The same reasoning as in part (a) shows that if i2 is transient, there should exist a 
state i3 where i2 → i3 but i3 � i2. Additionally, we know that i1 → i2 and i2 → i3 imply 
that i1 → i3. 

We know that i1 → i2. Now if i3 → i1, then i3 → i2 which is against what we said about 
i3. Then i1 should not be accessible from i3. (i.e., i3 � i1) 

c) The same reasoning as in part (a) shows that if ik is transient, there should exist a 
state ik+1 for which ik → ik+1 but ik+1 � ik. Now if for any 1 ≤ j ≤ k, ik+1 → j, then we 
also have ik+1 → ik which is against the assumption about ik. 

d) Each state ik constructed in part c) is distinct from states i1, . . . , ik 1, since there is −
a path from ij to ik but not from ik to ij . Since there are only J states, the process in 
part c) must terminate with some k ≤ J , with means that ik isn’t transient, i.e., is recurrent. 

Solution to Exercise 3.3: 

In exercise 3.2 it is proved that each Markov chain has at least one recurrent state which 
induces a recurrent class of states. State 1 is accessible from all the states. So it is also 
accessible from the states of the recurrent class in this Markov chain. According to the 
definition of recurrent class, all the states that are accessible from the states of a recurrent 
class should have access to the states of this class, meaning that state 1 should communi­
cate to all of the classes of recurrent states. If two recurrent states communicate with one 
state, they should also communicate with each other, i.e., they belong to a single recurrent 
class. Hence, there should exist at most one recurrent class of states in this Markov chain. 

Problem 4: 

The desired graph is shown below. It should be clear that this construction can be 
used for any number of states M ≥ 3. Starting in state 1, there is only one possible state 
(first 2, then 3, up to J) that the chain can be for the first J − 1 steps. On the Jth step, 
there are two possible states (1 and 2). For each step from M to 2M − 2, there are two 
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Solution to Exercise 3.8: 

[P ] is doubly stochastic if both [P ] and [P ]T are stochastic. This is just a different way 
of saying that all the rows and all the columns of [P ] must sum to one (and all entries are 
non-negative). Since [P ] is stochastic, it has e (a column vector) as a right eigenvector with 
the associated eigenvalue λ = 1, i.e., [P ]e = e. Since [   P ]T is stochastic also, [P ]Te = e. 
Taking transposes of both sides we get eT [P ] = eT , so eT is a left eigenvector of [P ] asso­
ciated with λ = 1. Theorem 3.3.1 guarantees that this left eigenvector is unique within a 
scale factor, so scaling eT to become a probability vector, π = [1/M, 1/M/, · · · , 1/M ]. 

Solution to Exercise 3.9: 
a)� The steady state distribution of the Markov chain. is a probability vector π for which 

K K 
j=1 πj = 1 and for each 1 ≤ j ≤ K, πj = 

�
i=1 Pij πi.


In this Markov chain, We can have the following equations:


π0 = (1 − p)π0 + (1 − p)π1 

πj = pπj 1 + (1 − p)πj+1, for 1 ≤ j ≤ k − − 2 

πk 1 = pπk 2 + pπ− − k−1 

From the first equations we can have: 

p
π1 = π

1 − 0
p 

 

possible states (first 1,2, then 2,3, up to M − 1, M . Similarly, from steps 2(M − 1) + 1 to 
3(M − 1), there are 3 possible states (first 1, 2, 3, then 2, 3, 4, etc.). This continues up to 
(M − 1)2, which is the last step at which there are M  1 possible states, and then from 
(  − 1)2 

−
M + 1 on, all states are possible at each transition. This pattern should be clear 

from your tabulation for M = 4. 
The desired graph is shown below. It should be clear that this construction exists for 

all J ≥ 3. Any walk from node J back to node J must be of length iJ + k(J − 1) for some 
i ≥ 1 and some k ≥ 1. Note that iJ + k(J − 1) = i +(i + k)(J − 1). Trying to set this equal 
to (J − 1)2 yields i + (i + k − J + 1)(J − 1) = 0. This implies that i is a multiple J − 1, 
which makes iJ > (J − 1)2, so there is no walk from node J back to itself in (J − 1)2 steps. 
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Using the second equation and π1 = p π0     1 ,−p we can get:

p2

π2 = π
(1 − p) 02


Similarly, we can get:

j p

πj = π
(1   − )  0

p j

for 0 ≤ j ≤ k − 2. 

The last equation says = pπ π .  ρ = p
k 1  Calling , 1 for 0  j  k  1 we should − −p k−2 1−p ≤ ≤ −

have: 
= j 

The last equation to be satisfied is: 

k−1 

�πj ρ π0 
K
j=1 πj = 1. Thus we should have: 

k−1   
πj = ρj π0 = 1 

j=0 j=0 

So we should have the following

�
 as the steady

� �
 state

�
 distribution: 

1
(1)	 π0 = 

 πj 

�k−1 ρj
j=0 

(2) = ρj π0,	 for 0 ≤ j ≤ k − 1 

When ρ = 1, looking at the steady state probability distribution equations or the set of 
equations given in (1) and (2), we will find that the steady state distribution is uniform 
among the different states: 

1 
πj = , for 0 

k
≤ j ≤ k − 1 



b) For ρ = 1/2,
 �k−1 

ρj 1 
= 2(1 − )

2k 
j=0 

. Thus, 
1 

π0 =
2(1 − 1

 )2k

For ρ = 1, �k−1 
ρj = k 

j=0 

. Thus, 
1 

π0 = 
k 
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. 
For ρ = 2, �k−1 

j ρ = 2k − 1 
j=0 

. Thus, 
1 

π0 = 
2k − 1 

. And for all the cases, π j 
j = ρ π0, 0 ≤ j ≤ k − 1. 

As you observe ρ can be considered as a measure of flow among the states in the Markov 
chain. When ρ < 1, the flow is towards left and the state 0 has the highest probability. 
When ρ > 1, the flow is towards right and the state k−1 has the highest probability. When 
ρ = 1, there is no flow in any specific direction and the steady state distribution is uniform. 

c) If ρ = 1, we have: 

1 − ρ 
π0 = 

1 − ρk 
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π 1
k−1 = ρk

 
−  1 − ρ 

1− ρk 

So if ρ < 1, as k →∞, π0 → 1 − ρ and πk−1 → 0. 
And if ρ > 1, as k →∞, π0 → 0 and πk−1 → 1 − 1/ρ. 
For ρ = 1, the steady state distribution is uniform and π0 = πk−1 = 1/k → 0. 
For ρ < 1, the PMF drops off geometrically with ρ, the process returns to the zero 

state often and rarely wanders off to the higher states. Taking the limit, limk  π =→∞ 0  
(1 − ρ), limk  πk 1 = 0. For ρ = 1, all probabilities are equal, and limk  π0 = 0, →∞ − →∞
limk  πk 1 = 0. For ρ > 1, the probabilities increase with i and as k gets larger, →∞ −
it is increasingly unlikely to be in state 0. Taking the limits, limk→∞ π0 = (1 − ρ), 
limk→∞ πk−1 = 0. 

Solution to Exercise 3.10: 

a) The transition matrix of the first graph is: ⎡ 
0 p 0 1 − p 

1 − p 0 p 0 [P ] =

⎢⎢⎣
 0 1 

⎤
− p 0 p 

⎥



p
 0 1 − p 0
The steady state distribution will satisfy the following equati

⎥⎦
ons: 

π1 = (1 − p)π2 + pπ4 

π2 = (1 − p)π3 + pπ1 

π3 = (1 − p)π4 + pπ2 

π4 = (1 − p)π1 + pπ3 

1 = π1 + π2 + π3 + π4 

Solving these set of equations, we get: 

π1 = π2 = π3 = π4 = 1/4 

This was almost obvious considering the symmetry of the graph and equations. 
b) ⎡ 

2p(1 −  p) 0 p2 + (1 − p)2 0 
2 0 2p(1  p) 0 p2 + (1 [P ] = 

⎢

 2 2 

− − p)2 

p
 + (1 − p) 0 2p(1 − p) 0

⎤
0 p
 )


⎥



2 + (1 − p)2 0 2p(1 − p

Let’s define q =

⎣⎢
2p(1 − p). Then the corresponding Markov chain to [P

⎥
1]2 is:

⎦
 

You can observe that as the original Markov chain is periodic with period d = 2, [P ]d 

partitions the Markov chain into d disjoint recurrent classes. 
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Since, [P ]2 has two recurrent classes, there are two independent steady state distributions 
for this Markov chain. 

π1 = [1/2, 0, 1/2, 0] 
π2 = [0, 1/2, 0, 1/2] 

Any linear combination of these steady state distributions is also a steady state distribution 
of this Markov chain. 

c) If the initial state of the Markov chain is 1 or 3, i.e., X0 ∈ {1, 3}, the steady state 
distribution at time 2n as n → ∞, is [1/2, 0, 1/2, 0]. If the initial state of the Markov 
chain is 2 or 4, i.e., X0 ∈ {2, 4}, the steady state distribution at time 2n as n → ∞, is 
[0, 1/2, 0, 1/2]. Thus we will have: 

 
1/2 0 1/2 0 
0 1/2 0 1/2 lim [P ]2n = 

n  

⎡⎢⎢⎣
 1/2 0 1

⎤
→∞ /2 0





⎥⎦

0 1/2 0 1/2

⎥
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