Solutions to Homework 2

6.262 Discrete Stochastic Processes
MIT, Spring 2011

Solution to Exercise 1.10:

a) We know that Z(w) = X (w) + Y (w) for each w € Q.

Pr(Z(w) = +00) = Pr{w; Z(w) = 400 or Z(w) = —w}
= Pr{w; Z(w) = +o00} 4+ Pr{w; Z(w) = —oc0}

Pr{w; Z(w) = +o0} = Pr{w; X(w) = 0o or Y (w) = oo}
< Pr{w; X(w) = oo} + Pr{w; Y (w) = o0}
=0+0=0.

We know that X is a random variable and based on the definition of random variables,
we know that Pr{w; X (w) = co} = 0.
Similarly, it can be proved that Pr{w; Z(w) = —oo} = 0. Thus, Pr{w; Z(w) = oo} = 0.

Solution to Exercise 1.17:

a)

Since Y is integer-valued, Fy(y) and Fy are constant between integer values. Thus,
Jo" Py (y) dy = 2020 F(y).
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b) We can compute the PMF :



c¢) Condition on the event [Y = y], the rv X has a uniform distribution over the interval
[1,y]. So, E[X|Y =y] = (1 +y)/2.
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It’s too complicated to calculate this term.
d) Condition on the event [Y = y|, the rv Z has a uniform distribution over the interval

[1,%2%]. So, E[X|Y =] = (1+¢?)/2.
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Solution to Exercise 1.31:

a)
We know that:




0 0
|/ e dF (z) < / le™| dF(z)
And if r > 0, for z < 0, |e"*| < 1. Thus,

!/_Oooe”” dF(z)| < /0 dF(z) <1

—0o0

Similarly, when r <0, |e"*| <1 for > 0
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b) We know that for all z > 0, for each 0 < r < rj, €' < "%, Thus,

e.¢] o0
/ e dF(z) < / e dF(x) < o0
0 0

¢) We know that for all <0, for each ro <7 <0, "™ < €"2*. Thus,

0 0
/ e dF(z) < / e dF(r) < oo

d) We know the value of gx(r) for r = 0:

gX(O)Z/O dF(:C)Jr/OOOdF(x):l
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So for r = 0, the moment generating function exists. We also know that the first integral
exists for all » > 0. And if the second integral exists for a given r; > 0, it exists for all
0 <r <ry. Soif gx(r) exists for some 1 > 0, it exists for all 0 < r < r;. Similarly, we
can prove that if gx(r) exists for some ro < 0, it exists for all ro < r < 0. So the interval
in which gx(r) exists is from some ry < 0 to some r; > 0.

e) We note immediately that with fx(z) = e™® for z > 0, gx(1) = oco. With
fx(x) = (az™2)e™® for x > 1 and 0 otherwise, it is clear that gx(1) < oo. Here a is

taken to be such that [“(az?)e " dz = 1.

Solution to Exercise 1.33:

Given that X;’s are IID, we have E[S,] = nE[X] = nd and Var(S,) = nVar(X) = no?
where Var(X) = 02 = §(1 — ). Since Var(X) < oo, the CLT implies that the normalized
version of S,,, defined as Y;, = (S, — nE[X])/(y/no) will tend to a normalized Gaussian



distribution as n — oo, so we can use the integral in (1.81). First let us see what is
happening and then we will verify the results.

a) The standard deviation of S, is increasing in y/n while the interval of the summation
is a fixed interval about the mean. Thus, the probability distribution becomes flatter and
more spread out as n increases, and the probability of interest tends to 0. Analytically, let
Y = (Sn — nE[X])/(v/no), then,

(1) S Pr{S, =i}~ Fs,(nd+m)—Fs,(nd—m) = Fy, (—=) — Fy, ( )
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For large n, Y,, becomes a standard normal,
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Comment: To be rigorous, which is not necessary here, the limit in (2) is taken as follows.

We need to show that Fy, (y,) — ®(y) (P is the cumulative gaussian distribution), where

the sequence y, — y and the functions Fy, — & (pointwise). Consider an ¢ > 0 and

pick N large enough so that for all n > N we have y — e < y, < y + €. Then we get,

Fy, (y —¢€) < Fy, (yn) < Fy, (y +€), Vn > N (since Fy, is non-decreasing). Take the limit

n — oo which gives ®(y — ¢€) < lim,, o0 Fy;, (yn) < ®(y + €) (by CLT). Now, take the limit

e — oo and since ®(.) is a continuous function, both sides of the inequality converge to the

same value ®(y) which completes the proof.

b) The summation here is over all terms below the mean plus the terms which exceed

the mean by at most m. As n — oo, the normalized distribution (the distribution of Y},)

becomes Gaussian and the integral up to the mean becomes 1/2. Analytically,

B ST (S, = i) = Jim (B ()~ R (SE) =172

1:0<i<nd+m
c¢) The interval of summation is increasing with n while the standard deviation is increas-

ing with \/n. Thus, in the limit, the probability of interest will include all the probability
mass.

lim Pr {Sn = Z} = lim (FYn(
n—oo n—oo

in(0—1/m)<i<n(6+1/m)

)= By, (——=)) =1
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Solution to Exercise 1.38:

We know that S, is a r.v. with mean 0 and variance no?. According to CLT, both
Sp/ov/n and Say,/ov/2n converge in distribution to normal distribution with mean 0 and
variance 1. But this does not imply the convergence of S, /o+\/n — Sa,, /0 2n.
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Independency of X;’s imply the independency of S, = > | X; and S}, = ZZ" X;.

1=n—+1
Both S,,/(o+/n) and S}, /(cy/n) converge in distribution to zero mean, unit variance nor-

mal distribution and they are independent. Thus, (\@\/%1)0% converges to a normal r.v.
S/

with mean 0 and variance 3/2 — v/2 and is independent of (\%)U o which converges in

distribution to a normal r.v. with mean 0 and variance 1/2.

Sn _ _Son . C . . . .
So, - f poT converges in distribution to a normal r.v with mean 0 and variance
2 — 52" does not converge to a constant and it might take

dlfferent values with the descrlbed probablhty distribution.

Solution to Exercise 1.42:

a)

X =100

0% = (10" = 100)% x 1071 4- (100 + 1)% x (1 — 1071%)/2 + (100 — 1)? x (1 — 1071%)/2
=10" -2 x 10" + 10* = 10",
Thus, )
S, = 100n
o3 =nx10"
b) This is the event that all 109 trials result in +£1. That is, there are no occurrences of
10'2. That is, there are no occurrences of 10'2. Thus, Pr.S, < 10° = (1-— 10*10)106_

c) From the union bound, the probability of one or more occurrences of the sample
value 10'? out of 10° trials is bounded by a sum over 10° terms, each of which is 10710,
ie., 1— Fg, (105 <1074

d) Conditional on no occurrences of 10'2, S, simply has a binomial distribution. We
know from the central limit theorem for the binomial case that S, will be approximately
Gaussian with mean 0 and standard deviation 103. Since one or more occurrences of 102
occur only with probability 10, this can be neglected, so the distribution function is
approximately Gaussian with 3 sigma points at £3 x 103.
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FIGURE 1. Distribution function of S,, for n = 10°

e) First, consider the PMF pp(j) = of the number B = j of occurrences of the value

102, We have
) 1010 . 10_
pe(j) = < j )qj(l—q)10 J

where ¢ = 10710,

pp(0)=(1— q)1010 = exp(10°1n[1 — ¢]) = exp (—=10'%) = e7*
10 _ 10 _ —
pe(1)=10"1 -9 T =(1-9"" =
1010 10" % (1010 — 1 1
pB(2) = < 02 >q2(1 _ q)1010—2 _ 07 x (2 )(10—10)2(1 _ 10—10)1010—2 ~ el

Thus,

\)

Pr(B < 2)~ 2.5¢!

Conditional on {B = j}, S, will be approximately Gaussian with mean 10125 and stan-
dard deviation of 10°. Thus Fg, () rises from 0 to e~! over a range of = from about
—3 x 10° to +3 x 10°. It then stays virtually constant up to about z = 102 — 3 x 10°.
It rises to 2e~! by about = 102 + 3 x 10°. It stays virtually constant up to about
2 x 10'2 — 3 x 10° and rises to 2.5¢~! by about 2 x 102 + 3 x 10°. When we sketch this,
the rises in Fg, () for n = 10'° over a width of about 6 x 10° look essentially vertical on a



scale of 2 x 102, rising from 0 to e~ at 0, from 1/e to 2/e at 10! and from 2/e to 2.5/e
at 2 x 10'2. There are smaller steps at larger values, but they would scarcely show up on
this sketch.
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FIGURE 2. Distribution function of S,, for n = 101°

f) It can be seen that for this peculiar rv, S, /n is not concentrated around its mean even
for n = 10'° and S,,/+/(n) does not look Gaussian even for n = 10'°. For this particular
distribution, n has to be so large that B, the number of occurrences of 102, is large, and
this requires n > 10'°. This illustrates a common weakness of limit theorems. They say
what happens as a parameter (n in this case) becomes sufficiently large, but it takes extra
work to see how large that is.



MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



