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MIT, Spring 2011 

Solution to Exercise 1.10: 

a) We know that Z(ω) = X(ω) + Y (ω) for each ω ∈ Ω. 

Pr(Z(ω) = ±∞) = Pr{ω; Z(ω) = +∞ or Z(ω) = −ω}
= Pr{ω; Z(ω) = +∞} + Pr{ω; Z(ω) = −∞} 

Pr{ω; Z(ω) = +∞} = Pr{ω; X(ω) = ∞ or Y (ω) = ∞} 

≤ Pr{ω; X(ω) = ∞} + Pr{ω; Y (ω) = ∞}
= 0 + 0 = 0. 

We know that X is a random variable and based on the definition of random variables, 
we know that Pr{ω; X(ω) = ∞} = 0. 

Similarly, it can be proved that Pr{ω; Z(ω) = −∞} = 0. Thus, Pr{ω; Z(ω) = ±∞} = 0. 

Solution to Exercise 1.17: 

a) � Since Y is in�teger-valued, FY (y) and F c 
Y are constant between integer values. Thus, 

∞
F Y 0 (  y) dy = y

∞
=0 F c Y (y).

�+∞ 
E[Y ] = F c 

Y (y) 
y=0 

 
= 

�+∞ 2 
(y + 1)(y + 2) 

y=0 �+∞ 2 2 
= 

(y + 1) 
− 

(y + 2) 
y=0 

2 
= = 2 

1 

b) We can compute the PMF : 
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pY (y) = FY (y) − FY (y − 1) 
2 2

= 1 − − (1 
( 2) 

− ) 
y + 1)(y + y(y + 1)

4 
= , 

y(y + 1)(y + 2)
∀y > 0. 

�+∞ 
E[Y ] = y.pY (y) 

y=1 

+∞ 4 
= 

�
(y + 1)(y + 2) 

y=1 �+∞ 4 4 4 
= (

(y + 1) 
y=1 

− ) = = 2. 
(y + 2) 2 

c) Condition on the event [Y = y], the rv X has a uniform distribution over the interval 
[1, y]. So, E[X|Y = y] = (1 + y)/2. 

1 + y 1 + E[y]
E[X] = E[E[X|Y = y]] = E[ ] = = 3/2 

2 2 

y=∞ 
pX (x) = 

�
pX )p|Y (x|y Y (y) 

y=1 

y

= 
�=∞ 4 

y2(y + 1)(y + 2) 
y=x 

y

= 
�=∞ −3 2 4 1 

+ + − 
y y2 y + 1 y + 2 

y=x 

It’s too complicated to calculate this term. 
d) Condition on the event [Y = y], the rv Z has a uniform distribution over the interval 

[1, y2]. So, E[X|Y = y] = (1 + y2)/2. 

1 + 2 y 1 1 
∞ 4y

E[Z] = [ ] = +
2 2 2 

�
=  

(y + 1)(y + 2) 
y=1 

∞

Solution to Exercise 1.31: 
a) 

We know that: 
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 0  0 

| er x dF (x) ≤ |er x| dF (x) 
−∞ −∞

And if r ≥ 0, for x < 0, r

�
x us, 

�
|e | ≤ 1. Th

 0  0 

| 
�

 er x dF (x)  

r

�
(x)

 
| ≤ dF ≤ 1 

x
−∞ −∞ 

Similarly, when r ≤ 0, |e | ≤ 1 for x ≥ 0 �   ∞ ∞ ∞ 

| er x dF (x)| ≤ 
�

|er x  dF (x)  dF (x)  1 
0 0 

| ≤
�

0 
≤

b) We know that for all  0, for each  x ≥ 0 ≤ r ≤ r , erx ≤ er1x 
1 . Thus, �  ∞ ∞ 

er x dF (x) ≤ 
0

�
er 1x dF (x) < 

0 
∞

c) We know that for all x ≤ 0, for each r2   
 ≤ r ≤ 0, erx ≤ er2x. Thus, � 0 � 0 

er x dF (x) ≤ er 2x dF (x) < ∞
−∞ −∞ 

d) We know the value of gX (r) for r = 0: 
 0  ∞ 

gX (0) = dF (x) + dF (x) = 1 
−∞ 0 

So for r = 0, the moment generating

�
 function exists.

�
 We also know that the first integral 

exists for all r ≥ 0. And if the second integral exists for a given r1 > 0, it exists for all 
0 ≤ r ≤ r1. So if gX (r) exists for some r1 ≥ 0, it exists for all 0 ≤ r ≤ r1. Similarly, we 
can prove that if gX (r) exists for some r2 ≤ 0, it exists for all r2 ≤ r ≤ 0. So the interval 
in which gX (r) exists is from some r2 ≤ 0 to some r1 ≥ 0. 

e) We note immediately that with fX (  x) = e−x for x  0, gX (1) = . With 
f 2 x 

≥ ∞
X (x) = (ax− )e− for x ≥ 1 and 0 otherwise, it is clear that  gX (1) < ∞. Here a is 

taken to be such that 
�∞
1 ( −2)  ax e−x dx = 1. 

Solution to Exercise 1.33: 

Given that Xi’s are IID, we have E[  Sn] = nE[X] = nδ and V ar(Sn) = nV ar(X) = nσ2

where V  ar(X) = σ2 = δ(1 − δ). Since V ar(X) < ∞, the CLT implies that the normalized 
version of Sn, defined as Yn = (Sn − nE[X])/(

√
nσ) will tend to a normalized Gaussian 
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distribution as n → ∞, so we can use the integral in (1.81). First let us see what is 
happening and then we will verify the results. 

a) The standard deviation of Sn is increasing in 
√

n while the interval of the summation 
is a fixed interval about the mean. Thus, the probability distribution becomes flatter and 
more spread out as n increases, and the probability of interest tends to 0. Analytically, let 
Yn = (Sn − nE[X])/(

√
nσ), then, 

�	 m m
(1)	 Pr {Sn = i} ∼ FSn (nδ + m) 

 

− FSn (nδ − m) = FYn (√ ) 
 
− FYn (−√ ) 

nσ nσ 
i:nδ−m≤i≤nδ+m

For large n, Yn becomes a standard normal,

 m m


(2)	 lim 
�

Pr {Sn = i} = lim (FYn (√ ) − FYn (− √ )) = 0 
n→∞ n

i:nδ m i nδ+m
→∞ nσ nσ 

− ≤ ≤

Comment: To be rigorous, which is not necessary here, the limit in (2) is taken as follows. 
We need to show that FYn (yn) → Φ(y) (Φ is the cumulative gaussian distribution), where 
the sequence yn →	 y and the functions FYn → Φ (pointwise). Consider an � > 0 and 
pick N large enough so that for all n ≥ N we have y − � ≤ yn ≤ y + �. Then we get, 
FYn (y − �) ≤ FYn (yn) ≤ FYn (y + �), ∀n > N (since FYn is non-decreasing). Take the limit 
n →∞ which gives Φ(y − �) ≤ limn  F (y )  Φ(y + �) (by CLT). Now, take the limit →∞ Yn n ≤
� →∞ and since Φ(.) is a continuous function, both sides of the inequality converge to the 
same value Φ(y) which completes the proof. 

b) The summation here is over all terms below the mean plus the terms which exceed 
the mean by at most m. As n → ∞, the normalized distribution (the distribution of Yn) 
becomes Gaussian and the integral up to the mean becomes 1/2. Analytically, 

	 m nδ
lim Pr {Sn = i} = lim (FYn ( )  FYn ( 

−
)) = 1/2 

n→∞ n  
√

nσ 
− √

nσ 
i:0≤i

�
≤nδ+m

→∞

c) The interval of summation is increasing with n while the standard deviation is increas­
ing with 

√
n. Thus, in the limit, the probability of interest will include all the probability 

mass. 

lim 
� n n 

Pr {Sn = i} = lim (FYn ( √ ) − F
 Y→∞ n(

m   
−

)) = 1 
n  n→∞ nσ m

√
nσ 

i:n(δ−1/m)≤i≤n(δ+1/m) 

Solution to Exercise 1.38: 

We know that Sn is a r.v. with mean 0 and variance nσ2 . According to CLT, both 
Sn/σ

√
n and S2n/σ

√
2n converge in distribution to normal distribution with mean 0 and 

variance 1. But this does not imply the convergence of Sn/σ
√

n − S2n/σ
√

2n. 

4



 

Sn S2n 
√

2S√ =   S− √    √n − 2n

σ n σ 2n σ√
2 

= 

� 2n 
n  �2n

i=1 X√i − i=1 Xi


σ 2n 
√

2  
= ( 

− 1
) 
�n  2n

i=1 X√ √ i 1 i=n+1 Xi 

2 σ n 
− √

2 

�
σ
√

n 
 

Independency of Xi’s imply the independency of Sn = n 2n
i=1 X√ i and Sn

� = i=n+1 Xi. 
Both Sn/(σ n) and Sn

� /(σ
√

n) converge in distribution to

�
 zero mean, unit variance nor­√

mal distribution and they are independent. Thus, ( √2−1 ) S√n converges to a 

�
normal r.v. 

2 σ n 

with mean 0 and variance 3 2
√

− 2 and is independent of ( 1 ) Sn
�

     /        √  √ which converges in 
2 σ n 

distribution to a normal r.v. with mean 0 and variance 1/2. 
So, S√n − S√2n converges in distribution to a normal r.v with mean 0 and variance 

σ n σ 2n 

2 
√

− 2. This means that S√n − S√2n does not converge to a constant and it might take 
σ n σ 2n 

different values with the described probability distribution. 

Solution to Exercise 1.42: 

a) 
X̄  = 100 

σ2 = (1012 − 100)2 × 10−10 + (100 + 1)2 × (1 − 10−10
X )/2 + (100 − 1)2 × (1 − 10−10)/2

= 1014 − 2 × 104 + 104 ≈ 1014 . 

Thus,

¯
Sn = 100n


σ2 = n × 1014

Sn 

b) This is the event that all 106 trials result in ±1. That is, there are no occurrences of 
1012 . That is, there are no occurrences of 1012 . Thus, Pr Sn ≤ 106 = (1 − 10−10)106 

. 

c) From the union bound, the probability of one or more occurrences of the sample 
value 1012 out of 106 trials is bounded by a sum over 106 terms, each of which is 10−10 , 
i.e., 1 − F (106 4

Sn ) ≤ 10−  . 

d) Conditional on no occurrences of 1012 , Sn simply has a binomial distribution. We 
know from the central limit theorem for the binomial case that Sn will be approximately 
Gaussian with mean 0 and standard deviation 103 . Since one or more occurrences of 1012 

occur only with probability 10−4, this can be neglected, so the distribution function is 
approximately Gaussian with 3 sigma points at ±3 × 103 . 
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Figure 1. Distribution function of Sn for n = 106 

e) First, consider the PMF pB(j) = of the number B = j of occurrences of the value 
1012 . We have �  

1010 

 
10

p ( )10 j
B j) = qj (1  −  q

j 

where

�
−

 q = 10−10 . 

10  pB (0) = (1 −   q)10 = exp(1010 ln [1 − q]) ≈ exp (−1010q) = e−1

pB (1) = 1010 q(1 − )1010−1 q = (1 − q)1010−1 ≈ e−1 

� � 
1010 10 10 

2 1010 2 10 × (10 − 1) 10 2 10 1010 2 1 
pB (2) = q (1 − q) − = (10− ) (1 − 10− ) − ≈  e−1

2 2 2
Thus, 

Pr (B ≤ 2) ≈ 2.5e−1 

Conditional on {B = j}, Sn will be approximately Gaussian with mean 1012j and stan­
dard deviation of 105 . Thus FSn (x) rises from 0 to e−1 over a range of x from about 
−3 × 105 to +3 × 105 . It then stays virtually constant up to about x = 1012 − 3 × 105 . 
It rises to 2e−1 by about x = 1012 + 3  105 . It stays virtually constant up to about 
2 × 1012 5

×
− 3 × 10  and rises to 2.5   e−1 by about 2 × 1012 + 3 × 105 . When we sketch this, 

the rises in FSn (x) for n = 1010 over a width of about 6 × 105 look essentially vertical on a 
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Figure 2. Distribution function of Sn for n = 1010 

f) It can be seen that� for this peculiar rv, Sn/n is not concentrated around its mean even  
for n = 1010 and Sn/ (n) does not look Gaussian even for n = 1010 . For this particular 
distribution, n has to be so large that B, the number of occurrences of 1012, is large, and 
this requires n � 1010 . This illustrates a common weakness of limit theorems. They say 
what happens as a parameter (n in this case) becomes sufficiently large, but it takes extra 
work to see how large that is. 

 

scale of 2 × 1012, rising from 0 to e−1 at 0, from 1/e to 2/e at 1012 and from 2/e to 2.5/e 
at 2 × 1012 . There are smaller steps at larger values, but they would scarcely show up on 
this sketch. 
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