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Game Theory: Lecture 14 Strategic Model 

Introduction


In this lecture, we discuss an axiomatic approach to the bargaining 
problem. 

In particular, we introduce the Nash bargaining solution and study the 
relation between the axiomatic and strategic (noncooperative) models. 

As we have seen in the last lecture, the Rubinstein bargaining model 
allows two players to offer alternating proposals indefinitely, and it 
assumes that future payoffs of players 1 and 2 are discounted by 
δ1, δ2 ∈ (0, 1). 
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Game Theory: Lecture 14 Strategic Model 

Rubinstein Bargaining Model with Alternating Offers 

We showed that the following stationary strategy profile is a subgame 
perfect equilibrium for this game. 

Player 1 proposes x∗ and accepts offer y if, and only if, y ≥ y1 
∗.1 

Player 2 proposes y ∗ and accepts offer x if, and only if, x ≥ x2 
∗,2 

where 

x1 
∗ = 

1 − δ2 , y1 
∗ = 

δ1(1 − δ2) ,
1 − δ1δ2 1 − δ1δ2 

= , = .x2 
∗ δ2(1 − δ1) y2 

∗ 1 − δ1 

1 − δ1δ2 1 − δ1δ2 

Clearly, an agreement is reached immediately for any values of δ1 and δ2. 

To gain more insight into the resulting allocation, assume for simplicity that 
δ1 = δ2. Then, we have 

If 1 moves first, the division will be ( 1+
1 

δ , 1+
δ

δ ). 
If 2 moves first, the division will be ( 1+

δ
δ , 1+

1 
δ ). 
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Game Theory: Lecture 14 Strategic Model 

Rubinstein Bargaining Model with Alternating Offers 

The first mover’s advantage (FMA) is clearly related to the impatience of 
the players (i.e., related to the discount factor δ): 

If δ 1, the FMA disappears and the outcome tends to ( 12 , 2
1 ). 

If δ 
→ 

0, the FMA dominates and the outcome tends to (1, 0).→ 

More interestingly, let’s assume the discount factor is derived from some 
interest rates r1 and r2. 

δ1 = e−r1Δt , δ2 = e−r2Δt 

These equations represent a continuous-time approximation of interest rates. 
It is equivalent to interest rates for very small periods of time Δt: 
e−ri Δt 1 

1+ri Δt . 

Taking Δt 0, we get rid of the first mover’s advantage. → 

1 − δ2 1 − e−r2Δt r2lim = lim = lim = . 
Δt→0 

x1 
∗ 

Δt→0 1 − δ1δ2 Δt→0 1 − e−(r1+r2)Δt r1 + r2 
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Game Theory: Lecture 14 Strategic Model 

Alternative Bargaining Model: Nash’s Axiomatic Model 

Bargaining problems represent situations in which: 

There is a conflict of interest about agreements. 
Individuals have the possibility of concluding a mutually beneficial 
agreement. 
No agreement may be imposed on any individual without his approval. 

The strategic or noncooperative model involves explicitly modeling the 
bargaining process (i.e., the game form). 

We will next adopt an axiomatic approach, which involves abstracting away 
the details of the process of bargaining and considers only the set of 
outcomes or agreements that satisfy ”reasonable” properties. 

This approach was proposed by Nash in his 1950 paper, where he states 
“One states as axioms several properties that would seem natural for the 
solution to have and then one discovers that axioms actually determine the 
solution uniquely.” 

The first question to answer is: What are some reasonable axioms? 

To gain more insight, let us start with a simple example. 
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Game Theory: Lecture 14 Strategic Model 

Nash’s Axiomatic Model


Example 

Suppose 2 players must split one unit of a good. If no agreement is reached, then 
players do not receive anything. Preferences are identical. We then expect: 

Players to agree (Efficiency) 

Each to obtain half (Symmetry) 

We next consider a more general scenario. 

We use X to denote set of possible agreements and D to denote the 
disagreement outcome. 

As an example we may have 

X = {(x1, x2)|x1 + x2 = 1, xi ≥ 0}, D = (0, 0). 
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Game Theory: Lecture 14 Strategic Model 

Nash’s Axiomatic Model


We assume that each player i has preferences, represented by a utility 
function ui over X ∪ {D}. We denote the set of possible payoffs by set U 
defined by 

U = {(v1, v2) | u1(x) = v1, u2(x) = v2 for some x ∈ X }
d = (u1(D), u2(D)) 

A bargaining problem is a pair (U, d) where U ⊂ R2 and d ∈ U. We 
assume that 

U is a convex and compact set. 
There exists some v ∈ U such that v > d (i.e., vi > di for all i). 

We denote the set of all possible bargaining problems by B.


A bargaining solution is a function f : B → U.


We will study bargaining solutions f ( ) that satisfy a list of reasonable
·
axioms. 
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Game Theory: Lecture 14 Strategic Model 

Axioms 

Pareto Efficiency: 

A bargaining solution f (U, d) is Pareto efficient if there does not exist 
a (v1, v2) ∈ U such that v ≥ f (U, d) and vi > fi (U, d) for some i . 
An inefficient outcome is unlikely, since it leaves space for renegotiation. 

Symmetry: 

Let (U, d) be such that (v1, v2) ∈ U if and only if (v2, v1) ∈ U and 
d1 = d2. Then f1(U, d) = f2(U, d). 
If the players are indistinguishable, the agreement should not 
discriminate between them. 
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Game Theory: Lecture 14 Strategic Model 

Axioms 

Invariance to Equivalent Payoff Representations 

Given a bargaining problem (U, d), consider a different bargaining 
problem (U �, d �) for some α > 0, β: 

U � = {(α1v1 + β1, α2v2 + β2) | (v1, v2) ∈ U}
d � = (α1d1 + β1, α2d2 + β2) 

Then, fi (U �, d �) = αi fi (U, d) + βi . 
Utility functions are only representation of preferences over outcomes. 
A transformation of the utility function that maintains the some 
ordering over preferences (such as a linear transformation) should not 
alter the outcome of the bargaining process. 

Independence of Irrelevant Alternatives 

Let (U, d) and (U �d) be two bargaining problems such that U � ⊆ U. If 
f (U, d) ∈ U �, then f (U �, d) = f (U, d). 
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Game Theory: Lecture 14 Strategic Model 

Nash Bargaining Solution 

Definition 

We say that a pair of payoffs (v1 
∗, v2 

∗) is a Nash bargaining solution if it solves the 
following optimization problem: 

max (v1 − d1)(v2 − d2)	 (1) 
v1,v2 

subject to	 (v1, v2) ∈ U 

(v1, v2) ≥ (d1, d2) 

We use f N (U, d) to denote the Nash bargaining solution. 

Remarks: 

Existence of an optimal solution: Since the set U is compact and the 
objective function of problem (1) is continuous, there exists an optimal 
solution for problem (1). 

Uniqueness of the optimal solution: The objective function of problem (1) is 
strictly quasi-concave. Therefore, problem (1) has a unique optimal solution. 
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Game Theory: Lecture 14 Strategic Model 

Nash Bargaining Solution 

Proposition 

Nash bargaining solution f N (U, d) is the unique bargaining solution that satisfies 
the 4 axioms. 

Proof: The proof has 2 steps. We first prove that Nash bargaining solution

satisfies the 4 axioms. We then show that if a bargaining solution satisfies the 4

axioms, it must be equal to f N (U, d).

Step 1:


Pareto efficiency: This follows immediately from the fact that the objective 
function of problem (1) is increasing in v1 and v2. 

Symmetry: Assume that d1 = d2. Let v ∗ = (v1 
∗, v2 

∗) = f N (U, d) be the 
Nash bargaining solution. Then, it can be seen that (v2 

∗, v1 
∗) is also an 

optimal solution of (1). By the uniqueness of the optimal solution, we must 
have v1 

∗ = v2 
∗, i.e, f1 

N (U, d) = f2 
N (U, d). 
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Game Theory: Lecture 14 Strategic Model 

Nash Bargaining Solution 

Independence of irrelevant alternatives: Let U � ⊆ U. From the optimization 
problem characterization of the Nash bargaining solution, it follows that the 
objective function value at the solution f N (U, d) is greater than or equal to 
that at f N (U �, d). If f N (U, d) ∈ U �, then the objective function values 
must be equal, i.e f N (U, d) is optimal for U � and by uniqueness of the 
solution f N (U, d) = f N (U �, d). 

Invariance to equivalent payoff representations: By definition, f (U �, d �) is an 
optimal solution of the problem 

max(v1 − α1d1 − β1)(v2 − α2d2 − β2) v1,v2 

s.t (v1, v2) ∈ U � 

Performing the change of variables v1
� = α1v1 + β1 v2

� = α2v2 + β2, it

follows immediately that fi

N (U �, d �) = αi fi
N (U, d) + βi for i = 1, 2.
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Game Theory: Lecture 14 Strategic Model 

Nash Bargaining Solution 

Step 2: Let f (U, d) be a bargaining solution satisfying the 4 axioms. We prove 
that f (U, d) = f N (U, d). 

Let z = f N (U, d), and define the set 

U � = {α�v + β|v ∈ U; α�z + β = (1/2, 1/2)�; α�d + β = (0, 0)�}, 

i.e., we map the point z to (1/2, 1/2) and the point d to (0,0). 

Since f (U, d) and f N (U, d) both satisfy axiom 3 (invariance to equivalent 
payoff representations), we have f (U, d) = f N (U, d) if and only if 
f (U �, 0) = f N (U �, 0) = (1/2, 1/2). Hence, to establish the desired claim, it 
is sufficient to prove that f (U �, 0) = (1/2, 1/2). 

Let us show that there is no v ∈ U � such that v1 + v2 > 1:

Assume that there is a v ∈ U � such that v1 + v2 > 1. Let

t = (1 − λ)(1/2, 1/2) + λ(v1, v2) for some λ ∈ (0, 1). Since U � is convex,

we have t ∈ U �. We can choose λ sufficiently small so that

t1t2 > 1/4 = f N (U �, 0), but this contradicts the optimality of f N (U �, 0),

showing that for all v ∈ U �, we have v1 + v2 ≤ 1.
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Game Theory: Lecture 14 Strategic Model 

Nash Bargaining Solution 

Since U � is bounded, we can find a rectangle U �� symmetric with respect to 
the line v1 = v2, such that U � ⊆ U �� and (1/2, 1/2) is on the boundary of 
U ��. 

By Axioms 1 and 2, f (U ��, 0) = (1/2, 1/2). 

By Axiom 4, since U � ⊆ U ��, we have f (U �, 0) = (1/2, 1/2), completing the 
proof. 
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Example: Dividing a Dollar 

Let X = {(x1, x2)|x1 ≥ 0, x1 + x2 = 1}, D = (0, 0). We define the set of 
payoffs as 

U = {(v1, v2)|(v1, v2) = (u1(x1), u2(x2)), (x1, x2) ∈ X }, 

and d = (u1(0), u2(0)). We study the Nash bargaining solution for two cases: 

Case 1. u1 = u2 = u (u: concave and u(0) = 0): symmetric bargaining 
problem. Hence f N (U, d) = (1/2, 1/2): the dollar is shared equally. The 
Nash bargaining solution is the optimal solution of the following problem 

max v1(z)v2(1 − z) = u(z)u(1 − z). 
0≤z≤1 

We denote the optimal solution of this problem by zu. By the first order 
optimality conditions, we have 

u�(z)u(1 − z) = u(z)u�(1 − z), 

implying that u
u

�

(
(
z
z

u

u 
)
) = uu

� 

(
(
1
1
−
−
z
z

u

u 
)
) 
. 
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Example: Dividing a Dollar 

Case 2. Player 2 is more risk averse, i.e., v1 = u, v2 = h u, where 
h : R R is an increasing concave function with h(0) = 

◦
0. The Nash →

bargaining solution is the optimal solution of the following problem 

max v1(z)v2(1 − z) = u(z)h(u(1 − z)) 
0≤z≤1 

We denote the optimal solution of this problem by zv By the first order 
optimality conditions, we have 

u�(z)h(u(1 − z)) = u(z)h�(u(1 − z))u�(1 − z), 

implying that u
u

�

(
(
z
z

v

v 
)
) = h

� (u(
h
1
(
−
u
z
(
v 
1
))
−

u
zv 

� (
)) 
1−zv ) . 

Since h is a concave increasing function and h(0) = 0, we have for 

h�(t) ≤ 
h(t) 

for all t ≥ 0. 
t 

This implies that u�(zv ) u�(1 − zv ) 
u(zv ) 

≤ 
u(1 − zv ) 

, 

and therefore zu ≤ zv . the preceding analysis shows that when player 2 is 
more risk averse, player 1’s share increases. 
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Relation of Axiomatic Model to Extensive Game Model


We next consider variations on Rubinstein’s bargaining model with 
alternating offers and compare the resulting allocations with the Nash 
bargaining solution. 

To compare, we need a disagreement outcome. 

We do this by considering two different scenarios: 

Availability of outside options 
Risk of breakdown 
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Outside Options Model 

When responding to an offer, player 2 may pursue an outside option (0, d2)

with d2 ≥ 0.


We have the following result for this game.


If d2 ≤ x∗ then the strategy pair of Rubinstein’s bargaining model is
2 
the unique SPE.

If d2 > x2 

∗ then the game has a unique SPE in which:

Player 1 always proposes (1 − d2, d2) and accepts a proposal y if and

only if y1 ≥ δ1(1 − d2).

Player 2 always proposes (δ1(1 − d2), 1 − δ1(1 − d2)) and accepts a

proposal x if and only if x2 ≥ d2.


Intuition: A player’s outside option has value only if it is worth more than 
her equilibrium payoff in its absence. 

Compare with the Nash bargaining solution xN given by 

xN = arg max (x − d1)(1 − x − d2) = 1/2 + 1/2(d1 − d2). 
x≥0 

This allocation is different from the equilibrium allocation in which the 
outside option (0, d2) only has an effect if d2 > x2 

∗. 
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Bargaining with the Risk of Breakdown 

In this model, there is an exogenous probability α of breaking down. 

We can assume without loss of generality that δ 1, since the possibility of →
a breakdown puts pressure to reach an agreement. 

It can be seen that this game has a unique SPE in which,

Player 1 proposes x̂ and accepts an offer y if and only if y1 ≥ ŷ1.

Player 2 proposes ŷ and accepts an offer x if and only if x1 ≥ x̂1,

where


ˆ = 
1 − d2 + (1 − α)d1 , ˆ =

(1 − α)(1 − d2) + d1 x1 y1
2 − α 2 − α 

Letting α → 0, we have x̂1 → 1/2 + 1/2(d1 − d2), which coincides with 
the Nash bargaining solution. 

That is, the variant of the bargaining game with alternating offers with 
exogenous probabilistic breakdown and Nash’s axiomatic model, though 
built entirely of different components, yield the same outcome. 
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