LECTURE 25: REVIEW /EPILOGUE

LECTURE OUTLINE

CONVEX ANALYSIS AND DUALITY
e Basic concepts of convex analysis

e Basic concepts of convex optimization

e Geometric duality framework - MC/MC
e (Constrained optimization duality

e Subgradients - Optimality conditions
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CONVEX OPTIMIZATION ALGORITHMS

e Special problem classes

e Subgradient methods

e Polyhedral approximation methods

e Proximal methods

e Dual proximal methods - Augmented Lagrangeans
e Interior point methods

e Incremental methods

e Optimal complexity methods

e Various combinations around proximal idea and
generalizations

All figures are courtesy of Athena Scientific, and are used with permission.

1



BASIC CONCEPTS OF CONVEX ANALYSIS

e Epigraphs, level sets, closedness, semicontinuity
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Convex function Nonconvex function

e Finite representations of generated cones and
convex hulls - Caratheodory’s Theorem.

e Relative interior:
— Nonemptiness for a convex set
— Line segment principle
— C(Calculus of relative interiors

e Continuity of convex functions

e Nonemptiness of intersections of nested sequences
of closed sets.

e Closure operations and their calculus.
e Recession cones and their calculus.

e Preservation of closedness by linear transforma-
tions and vector sums.



HYPERPLANE SEPARATION

(a)

e Separating/supporting hyperplane theorem.
e Strict and proper separation theorems.

e Dual representation of closed convex sets as
unions of points and intersection of halfspaces.

L

A union of points An intersection of halfspaces

e Nonvertical separating hyperplanes.



CONJUGATE FUNCTIONS

4 (—y,1)

e Conjugacy theorem: f = f**

e Support functions
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e Polar cone theorem: C = C**
— Special case: Linear Farkas’ lemma



BASIC CONCEPTS OF CONVEX OPTIMIZATION

e Weierstrass Theorem and extensions.

e Characterization of existence of solutions in
terms of nonemptiness of nested set intersections.

Level Sets of f

Optimal
Solution

e Role of recession cone and lineality space.

e Partial Minimization Theorems: Character-
ization of closedness of f(z) = inf,cpm F(x,z) in
terms of closedness of F'.

epi(f)




MIN COMMON/MAX CROSSING DUALITY

w A Min Common | Min Common
Point w* Point w*
;
o ;
, - .
Max Cr‘ossings)(/ Lo _ ¢
Point ¢* N Max Crossing
Point g¢* \
(a) (b)
w A
M
Min Common
Point w* —_ |
Max Crossing/// M
Point ¢* '
0 o

(9)

e Defined by a single set M c R™*.

o w* =inf( yyem w

* A ]
® § =Sup,cpn q(p) =inf(y wyen{w + p'u}
e Weak duality: ¢" < w*
e Two key questions:

— When does strong duality ¢* = w™ hold?

— When do there exist optimal primal and dual
solutions?



MC/MC THEOREMS (7 CONVEX, W* < oo)

¢ MC/MC Theorem I: We have ¢* = w™* if and
only if for every sequence {(uk,wk)} C M with
ur — 0, there holds

w* < lim inf wg.
k— o0

¢ MC/MC Theorem II: Assume in addition that
—oo < w* and that

D = {u | there exists w € ® with (u,w) € M}

contains the origin in its relative interior. Then
¢ = w* and there exists u such that q(u) = ¢~.

¢ MC/MC Theorem III: Similar to II but in-
volves special polyhedral assumptions.

(1) M is a “horizontal translation” of M by —P,
M =M —{(u,0) |ue P},

where P: polyhedral and M: convex.
(2) We have ri(D) N P # ¢, where

D = {u | there exists w € ® with (u,w) € M}



IMPORTANT SPECIAL CASE

e Constrained optimization: inf cx 4)<0 f(2)

e Perturbation function (or primal function)
p(u) = _ inf _ f(z),

rxeX, g(x)<u

p(u) |

L M = epi(p)
/ {(9(z), f(z)) |z € X}
w* = p(0)~°
.
0 -

e Introduce L(z,u) = f(z) + p'g(x). Then

() = i {p(u) + v}

= inf {f(@)+p'u}
weR", zeX, g(z)<u

_ {infmex L(x,pu) if u >0,
— 00 otherwise.



NONLINEAR FARKAS’ LEMMA

o Let X CR", f: X m— R and g; : X — R,
j=1,...,r, be convex. Assume that

f(x) >0, V x € X with g(x) <0
Let

Q" ={u|p>0, flx)+u'gx) >0,V zecX}

e Nonlinear version: Then Q* is nonempty and
compact if and only if there exists a vector 7 € X
such that g;(z) <0 for all j =1,...,r
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e Polyhedral version: Q* is nonempty if ¢ is
linear [g(z) = Az — b] and there exists a vector
Z € ri(X) such that Az — b < 0.



CONSTRAINED OPTIMIZATION DUALITY

minimize f(x)

subject to =z € X, g;(z) <0, j=1,...,r

where X Cc R, f: X — R and g; : X — R are
convex. Assume f*: finite.

e Connection with MC/MC: M = epi(p) with
p(U) — inf:nEX,g(:U)Su f(ﬂ?)

e Dual function:

_ [infpex L(x,p) if p >0,
a(m) = { —00 otherwise

where L(z,u) = f(z) + p'g(z) is the Lagrangian
function.

e Dual problem of maximizing ¢(u) over u > 0.

e Strong Duality Theorem: ¢* = f* and there
exists dual optimal solution if one of the following
two conditions holds:

(1) There exists 7 € X such that g(z) < 0.

(2) The functions g;, j =1,...,r, are affine, and
there exists T € ri(X) such that g(z) < 0.
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OPTIMALITY CONDITIONS

e We have ¢* = f*, and the vectors z* and u* are
optimal solutions of the primal and dual problems,
respectively, iff x* is feasible, u* > 0, and

z" € argmin L(z,p"),  p;gi(z7) =0, V.
e

e For the linear/quadratic program
minimize 12'Qz + 'z
subject to Az < b,

where @ is positive semidefinite, («*, u*) is a pri-
mal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:
Ax™ < b, uw >0

(b) Lagrangian optimality holds |[z* minimizes
L(z,u*) over x € ®"]. (Unnecessary for LP.)

(c) Complementary slackness holds:

(Az™ —b)' " =0,

1.e., u; > 0 1mplies that the jth constraint is tight.
(Applies to inequality constraints only.)
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FENCHEL DUALITY

e¢ Primal problem:

minimize fi(x) + fa(x)

subject to =z € R”,

where f1 : R" — (—o0,00] and f2 : R" — (—o00, ]
are closed proper convex functions.

e Dual problem:

minimize f7(A) + f5 (=)
subject to A € R”,

where f;" and f3 are the conjugates.

A
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CONIC DUALITY

e Consider minimizing f(z) over z € C, where f :
R" — (—o0,00] is a closed proper convex function
and C is a closed convex cone in R".

e We apply Fenchel duality with the definitions

0 ifzxzed,

fi(z) = f(), fQ(x):{oo if z ¢ C.

e¢ Linear Conic Programming:

minimize c'z

subject to x —be S, xeC.

e The dual linear conic problem is equivalent to

minimize b\

subject to A—ce ST, xeC.

e Special Linear-Conic Forms:

. / /
min cx — max b A,
AZC:b, SCEC C—A/AEO
. / /
min cx — max b A\,
Az—beC A'x=c, \eC

where z e R", A e R, ce R", be R™, A:m X n.
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SUBGRADIENTS

0/ 2z
e

o Of(x)# Dforx € ri(dom(f)).

e Conjugate Subgradient Theorem: If f is closed
proper convex, the following are equivalent for a
pair of vectors (z,y):

(i) 'y = f(z) + f*(y).
(ii) y € 0f(x).
(iii) = € af*(y).

e Characterization of optimal solution set X" =
arg mingenn f(x) of closed proper convex f:

(a) X* =0f*(0).
(b) X* is nonempty if 0 € ri(dom(f*)).

(¢) X* is nonempty and compact if and only if
0 € int (dom(f*)).
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CONSTRAINED OPTIMALITY CONDITION

o Let f:R" +— (—o0,0] be proper convex, let X
be a convex subset of ®", and assume that one of
the following four conditions holds:

(i) r (dom ) Nri(X) # @.
(ii) f is polyhedral and dom(f) Nri(X) # @.
(iii) X is polyhedral and ri(dom(f)) N X # &.

(iv) f and X are polyhedral, and dom(f) N X # O.

Then, a vector z* minimizes f over X iff there ex-
ists g € 0f(x*) such that —g belongs to the normal
cone Nx(x*), l.e.,

g (x—2x")>0, VarelX.

/S

N
Level Sets of f

Level Sets of f
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COMPUTATION: PROBLEM RANKING IN

INCREASING COMPUTATIONAL DIFFICULTY

e Linear and (convex) quadratic programming.
— Favorable special cases.

e Second order cone programming.
¢ Semidefinite programming.

e Convex programming.
— Favorable cases, e.g., separable, large sum.
— Geometric programming.

e Nonlinear/nonconvex/continuous programming.
— Favorable special cases.
— Unconstrained.
— Constrained.

e Discrete optimization/Integer programming
— Favorable special cases.

e Caveats/questions:
— Important role of special structures.
— What is the role of “optimal algorithms”?

— Is complexity the right philosophical view to
convex optimization?
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DESCENT METHODS

Use vector of min

norm on —Jdf(x); has convergence problems.

e Steepest descent method

(
-20 H

e Subgradient method

(zx — argr)

Tk — Okgk

Level sets of f

¢ c-subgradient method (approx. subgradient)

e Incremental (possibly randomized) variants for
minimizing large sums (can be viewed as an ap-

proximate subgradient method).

17



OUTER AND INNER LINEARIZATION

e Outer linearization: Cutting plane

A

e Duality between outer and inner linearization.
— Extended monotropic programming framework
— Fenchel-like duality theory
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PROXIMAL MINIMIZATION ALGORITHM

e A general algorithm for convex fn minimization

: 1
Tr+1 € arg min {f(x) + — ||z — a:k||2}

reRM 2Ck
— f:R" — (—00,00] is closed proper convex
— ¢k 18 a positive scalar parameter
— xo 1s arbitrary starting point

e 1,1 exists because of the quadratic.
e Strong convergence properties

e Starting point for extensions (e.g., nonquadratic
regularization) and combinations (e.g., with lin-
earization)
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PROXIMAL-POLYHEDRAL METHODS

e Proximal-cutting plane method

Vel
Ye [

e Proximal-cutting plane-bundle methods: Re-
place f with a cutting plane approx. and /or change
quadratic regularization more conservatively.

e Dual Proximal - Augmented Lagrangian meth-
ods: Proximal method applied to the dual prob-
lem of a constrained optimization problem.
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DUALITY VIEW OF PROXIMAL METHODS

Outer Linearization

_ Proximal Cutting
Proximal Method
Xl > Plane/Bundle Method

Fenchel Fenchel
Duality Duality

> Proximal Simplicial

Dual Proximal Method Decomp/Bundle Method

Inner Linearization

e Applies also to cost functions that are sums of
convex functions

fx) =) filz)

in the context of extended monotropic program-
ming
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INTERIOR POINT METHODS

e Barrier method: Let

:L'k:argmin{f(:v)+ekB(x)}, k=0,1,...

reS

where S = {z | gj(z) < 0,5 = 1,...,r} and the
parameter sequence {ex} satisfies 0 < ex11 < ex for

all k£ and ¢, — 0.

Boundary of S | | }- ¢ B(x)

eB(x)

I'<e
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ADVANCED TOPICS

e Incremental subgradient-proximal methods

e Complexity view of first order algorithms

— Gradient-projection for differentiable prob-
lems

— Gradient-projection with extrapolation

— Optimal iteration complexity version (Nes-
terov)

— Extension to nondifferentiable problems by
smoothing
e (Gradient-proximal method

e Useful extension of proximal. General (non-
quadratic) regularization - Bregman distance func-
tions

— Entropy-like regularization

— Corresponding augmented Lagrangean method
(exponential)

— Corresponding gradient-proximal method

— Nonlinear gradient /subgradient projection (en-
tropic minimization methods)
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