LECTURE 24

LECTURE OUTLINE

e (Gradient proximal minimization method

e Nonquadratic proximal algorithms

e Entropy minimization algorithm

e Exponential augmented Lagrangian mehod

e Entropic descent algorithm
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PROXIMAL AND GRADIENT PROJECTION

e Proximal algorithm to minimize convex f over
closed convex X

. 1
Ths1 € arg min {f(:v) P xknz}
Qck

rxeX

f(zr)
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e Let f be differentiable and assume
V(@) =VIiW)| <Lllz—yl, VazyeX

e Define the linear approximation function at x

Uy;x) = f(z) + Vf(x) (y— ), y € R"

e Connection of proximal with gradient projection

Yy = argmi)rcl {é(z; x) + %Hz — $||2} = Px (:E—an(x))

ze



GRADIENT-PROXIMAL METHOD 1

e Minimize f(x)+g(x) over x € X, where X: closed
convex, f, g: convex, f s differentiable.

e Gradient-proximal method:

. 1 2
Trpi1 € arg min {K(x, rr) + g(x) + %Hw — x| }

e Recall key inequality: For all 2,y € X

Fl) < Ly 2) + 5 lly o

e Cost reduction for a < 1/L:

L

f(@ra1) + 9(xry1) < UTrar; o) + §||=’Bk:+1 — xi||* + g(@ht1)
1
<l xpy1;or) + g(Trr1) + %kaﬂ — zk|?

< U(zk; k) + g(Tk)
= f(xr) + g(xk)

e This is a key insight for the convergence analy-
S1S.



GRADIENT-PROXIMAL METHOD 11

e Equivalent definition of gradient-proximal:
Zk — Lk — Osz(iEk)

e argmin { g(e) + o1z — 21]*}
I reg 1min - —
S g:cEX g 20 g

e Simplifies the implementation of proximal, by
using gradient iteration to deal with the case of
an inconvenient component f

e This is similar to incremental subgradient-proxi-
mal method, but the gradient-proximal method
does not extend to the case where the cost consists
of the sum of multiple components.

e Allows a constant stepsize (under the restriction
a < 1/L). This does not extend to incremental
methods.

e Like all gradient and subgradient methods, con-
vergence can be slow.

e There are special cases where the method can be
fruitfully applied (see the reference by Beck and
Teboulle).



GENERALIZED PROXIMAL ALGORITHM

e Introduce a general regularization term Dy:

Trp11 € arg min {f(:l?) + Dy (z, xk)}

xeX

e Example: Bregman distance function

Di(z,y) = — (6(z) — 6(y) — Vo) (@ — v)).

Ck
where ¢ : R — (—o0, 0] is a convex function, dif-

ferentiable within an open set containing dom(f),
and ci 1S a positive penalty parameter.

e All the ideas for applications and connections of
the quadratic form of the proximal algorithm ex-
tend to the nonquadratic case (although the anal-
ysis may not be trivial). In particular we have:

— A dual proximal algorithm (based on Fenchel
duality)

— Equivalence with (nonquadratic) augmented
Lagrangean method

— Combinations with polyhedral approximations
(bundle-type methods)

— Incremental subgradient-proximal methods
— Nonlinear gradient projection algorithms



ENTROPY MINIMIZATION ALGORITHM

e A special case involving entropy regularization:

1 7?
Tri1 € argarjréiﬁ {f(ac) + o ;xl (ln (%) — 1)}

where x¢ and all subsequent x; have positive com-
ponents

e We use Fenchel duality to obtain a dual form
of this minimization

e Note: The logarithmic function

0 if =0,
00 if £ <0,

r(lnx —1) if z >0,
p(z) = {

and the exponential function
p'(y) =e

are a conjugate pair.

e The dual problem is

1 : i
c a . * 1 _CLY
Yr+1 € arg min {f (y)+—0k E Tpe }



EXPONENTIAL AUGMENTED LAGRANGIAN

e The dual proximal iteration is
7 1 _c yi .
Ty, = Tpe "k+1, 1=1,...,n

where y,1 is obtained from the dual proximal:
Yr+1 € arg min < f*(y) + E En:x?;ec’“yi
yeRn Ck 4

e A special case for the convex problem

minimize f(x)

subject to ¢gi1(x) <0,...,g9-(x) <0, z€ X

is the exponential augmented Lagrangean method

e (Consists of unconstrained minimizations

. 1 - J ckgj(x)
zj, € arg min {f(a?) + o Zuke :

followed by the multiplier iterations

: .
i _ 0,95 (k) -
Wy = ek : g=1,...,7r
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NONLINEAR PROJECTION ALGORITHM

e Subgradient projection with general regulariza-
tion term Dy:

~

Tri1 € arg min {f(:l:k)—I—Vf(xk)/(a:—xk)—l-Dk(ﬂU, l‘k)}
rxeX

where Vf(zx) is a subgradient of f at zx. Also
called mirror descent method.

e Linearization of f simplifies the minimization

e The use of nonquadratic linearization is useful
in problems with special structure

e Entropic descent method: Minimize f(z) over
the unit simplex X = {:1; >0]> " x' = 1}.

e Method:

" i
Tk+1 € arg min r | g+ —In|—
1=

where ¢i are the components of V f(z).

e This minimization can be done in closed form:

T —Q gi
i rpe kk 1
Le+1 = . : t=1,...,MN
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